Advertisement

Blood Flow, Oxygenation, and Oxidative Stress in the Post-stenotic Kidney

  • Roger G. EvansEmail author
  • Paul M. O’Connor
Chapter

Abstract

Renal ischemia, hypoxia and oxidative stress progress together over the course of renovascular disease, and thus appear to operate in a vicious pathological triangle. Renal ischemia is initially driven by the mechanical effect of the stenosis, and maintained in the medium term chiefly by activation of the systemic and intrarenal renin-angiotensin systems. In the longer term, ischemia is exacerbated by inflammation, fibrosis and microvascular rarefaction, at least partly driven by signaling cascades initiated by oxidative stress and tissue hypoxia. Oxidative stress in renovascular disease is initially driven by activation of the renin-angiotensin system, but other factors, such as the pro-oxidant effects of uremic toxins, likely also contribute in the longer term. Oxidative stress drives ischemia by the direct vasoconstrictor effects of reactive oxygen species such as superoxide, and through reduced bioavailability of the vasodilator nitric oxide. This microvascular dysfunction appears to be a major driver of microvascular remodeling and rarefaction. Ischemia drives tissue hypoxia by reducing oxygen delivery to tissue. Oxidative stress and the resultant reduction in nitric oxide bioavailability also promote hypoxia by reducing the efficiency of oxygen utilization in mitochondria. Reduced glomerular filtration leads to reduced renal oxygen consumption, so provides some protection against the development of tissue hypoxia, at least in mild or early stage renovascular disease. But, eventually, homeostasis of tissue oxygenation cannot be maintained, and tissue hypoxia ensues.

Keywords

Fibrosis Inflammation Microvascular rarefaction Oxidative stress Oxygen Perfusion Renal cortex Renal medulla 

Notes

Acknowledgements

The authors’ work has been supported by grants from the National Health and Medical Research Council of Australia (143603, 143785, 384101, 606601 & 1024575) and the American Heart Association (10SDG4150061).

References

  1. 1.
    Mimura I, Nangaku M. The suffocating kidney: tubulointerstitial hypoxia in end-stage renal disease. Nat Rev Nephrol. 2010;6:667–78.PubMedCrossRefGoogle Scholar
  2. 2.
    Maddox DA, Deen WM, Brenner BM. Glomerular filtration. Compr Physiol. 2011;Suppl 25:545–638.Google Scholar
  3. 3.
    Evans RG, Eppel GA, Anderson WP, Denton KM. Mechanisms underlying the differential control of blood flow in the renal medulla and cortex. J Hypertens. 2004;22:1439–51.PubMedCrossRefGoogle Scholar
  4. 4.
    Pallone TL, Edwards A, Mattson DL. Renal medullary circulation. Compr Physiol. 2012;2:97–140.PubMedGoogle Scholar
  5. 5.
    Gardiner BS, Thompson SL, Ngo JP, et al. Diffusive shunting between vessels in the pre-glomerular vasculature: anatomical observations and computational modeling. Am J Physiol Renal Physiol. 2012;303:F605–18.PubMedCrossRefGoogle Scholar
  6. 6.
    O’Connor PM, Evans RG. Structural antioxidant defense mechanisms in the mammalian and nonmammalian kidney: different solutions to the same problem? Am J Physiol Regul Integr Comp Physiol. 2010;299:R723–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Zhang W, Edwards A. Oxygen transport across vasa recta in the renal medulla. Am J Physiol Heart Circ Physiol. 2002;283:H1042–55.PubMedGoogle Scholar
  8. 8.
    Just A. Mechanisms of renal blood flow autoregulation: dynamics and contributions. Am J Physiol Regul Integr Comp Physiol. 2007;292:R1–17.PubMedCrossRefGoogle Scholar
  9. 9.
    Evans RG, Majid DS, Eppel GA. Mechanisms mediating pressure natriuresis: what we know and what we need to find out. Clin Exp Pharmacol Physiol. 2005;32:400–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Evans RG, Gardiner BS, Smith DW, O’Connor PM. Intrarenal oxygenation: unique challenges and the biophysical basis of homeostasis. Am J Physiol Renal Physiol. 2008;295:F1259–70.PubMedCrossRefGoogle Scholar
  11. 11.
    Brezis M, Agmon Y, Epstein FH. Determinants of intrarenal oxygenation. I. Effects of diuretics. Am J Physiol. 1994;267:F1059–62.PubMedGoogle Scholar
  12. 12.
    Heyman SN, Evans RG, Rosen S, Rosenberger C. Cellular adaptive changes in AKI: mitigating renal hypoxic injury. Nephrol Dial Transplant. 2012;27:1721–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Evans RG, Goddard D, Eppel GA, O’Connor PM. Factors that render the kidney susceptible to tissue hypoxia in hypoxemia. Am J Physiol Regul Integr Comp Physiol. 2011;300:R931–40.PubMedCrossRefGoogle Scholar
  14. 14.
    Hanna IR, Taniyama Y, Szocs K, Rocic P, Griendling KK. NAD(P)H oxidase-derived reactive oxygen species as mediators of angiotensin II signaling. Antioxid Redox Signal. 2002;4:899–914.PubMedCrossRefGoogle Scholar
  15. 15.
    Sedeek M, Gutsol A, Montezano AC, et al. Renoprotective effects of a novel Nox1/4 inhibitor in a mouse model of type 2 diabetes. Clin Sci (Lond). 2013;124(3):191–202.CrossRefGoogle Scholar
  16. 16.
    Feng D, Yang C, Geurts AM, et al. Increased expression of NAD(P)H oxidase subunit p67(phox) in the renal medulla contributes to excess oxidative stress and salt-sensitive hypertension. Cell Metab. 2012;15:201–8.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Basile DP, Leonard EC, Beal AG, Schleuter D, Friedrich J. Persistent oxidative stress following renal ischemia-reperfusion injury increases ANG II hemodynamic and fibrotic activity. Am J Physiol Renal Physiol. 2012;302:F1494–502.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Chade AR, Rodriguez-Porcel M, Herrmann J, et al. Antioxidant intervention blunts renal injury in experimental renovascular disease. J Am Soc Nephrol. 2004;15:958–66.PubMedCrossRefGoogle Scholar
  19. 19.
    Taylor NE, Glocka P, Liang M, Cowley Jr AW. NADPH oxidase in the renal medulla causes oxidative stress and contributes to salt-sensitive hypertension in Dahl S rats. Hypertension. 2006;47:692–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Fato R, Bergamini C, Leoni S, Lenaz G. Mitochondrial production of reactive oxygen species: role of complex I and quinone analogues. Biofactors. 2008;32:31–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Zelko IN, Mariani TJ, Folz RJ. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med. 2002;33:337–49.PubMedCrossRefGoogle Scholar
  22. 22.
    Musatov A, Robinson NC. Susceptibility of mitochondrial electron-transport complexes to oxidative damage. Focus on cytochrome c oxidase. Free Radic Res. 2012;46(11):1313–26.PubMedCrossRefGoogle Scholar
  23. 23.
    Dikalova AE, Bikineyeva AT, Budzyn K, et al. Therapeutic targeting of mitochondrial superoxide in hypertension. Circ Res. 2010;107:106–16.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    O’Connor PM, Gutterman DD. Resurrecting hope for antioxidant treatment of cardiovascular disease: focus on mitochondria. Circ Res. 2010;107:9–11.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Drummond GR, Selemidis S, Griendling KK, Sobey CG. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discov. 2011;10:453–71.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Chabrashvili T, Tojo A, Onozato ML, et al. Expression and cellular localization of classic NADPH oxidase subunits in the spontaneously hypertensive rat kidney. Hypertension. 2002;39:269–74.PubMedCrossRefGoogle Scholar
  27. 27.
    Gill PS, Wilcox CS. NADPH oxidases in the kidney. Antioxid Redox Signal. 2006;8:1597–607.PubMedCrossRefGoogle Scholar
  28. 28.
    Seshiah PN, Weber DS, Rocic P, Valppu L, Taniyama Y, Griendling KK. Angiotensin II stimulation of NAD(P)H oxidase activity: upstream mediators. Circ Res. 2002;91:406–13.PubMedCrossRefGoogle Scholar
  29. 29.
    Heitzer T, Wenzel U, Hink U, et al. Increased NAD(P)H oxidase-mediated superoxide production in renovascular hypertension: evidence for an involvement of protein kinase C. Kidney Int. 1999;55:252–60.PubMedCrossRefGoogle Scholar
  30. 30.
    Sachse A, Wolf G. Angiotensin II-induced reactive oxygen species and the kidney. J Am Soc Nephrol. 2007;18:2439–46.PubMedCrossRefGoogle Scholar
  31. 31.
    Massey KJ, Hong NJ, Garvin JL. Angiotensin II stimulates superoxide production in the thick ascending limb by activiating NOX4. Am J Physiol Cell Physiol. 2012;303(7):C781–9.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Lassegue B, Griendling KK. NADPH oxidases: functions and pathologies in the vasculature. Arterioscler Thromb Vasc Biol. 2010;30:653–61.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Graham KA, Kulawiec M, Owens KM, et al. NADPH oxidase 4 is an oncoprotein localized to mitochondria. Cancer Biol Ther. 2010;10:223–31.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Harrison DG, Guzik TJ, Lob HE, et al. Inflammation, immunity, and hypertension. Hypertension. 2011;57:132–40.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Palm F, Teerlink T, Hansell P. Nitric oxide and kidney oxygenation. Curr Opin Nephrol Hypertens. 2009;18:68–73.PubMedCrossRefGoogle Scholar
  36. 36.
    Hong NJ, Garvin JL. Nitric oxide reduces flow-induced superoxide production via cGMP-dependent protein kinase in thick ascending limbs. Am J Physiol Renal Physiol. 2009;296:F1061–6.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Edwards A, Layton AT. Nitric oxide and superoxide transport in a cross section of the rat outer medulla. II. Reciprocal interactions and tubulovascular cross talk. Am J Physiol Renal Physiol. 2010;299:F634–47.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Vasquez-Vivar J, Hogg N, Martasek P, Karoui H, Pritchard Jr KA, Kalyanaraman B. Tetrahydrobiopterin-dependent inhibition of superoxide generation from neuronal nitric oxide synthase. J Biol Chem. 1999;274:26736–42.PubMedCrossRefGoogle Scholar
  39. 39.
    Son D, Kojima I, Inagi R, Matsumoto M, Fujita T, Nangaku M. Chronic hypoxia aggravates renal injury via suppression of Cu/Zn-SOD: a proteomic analysis. Am J Physiol Renal Physiol. 2008;294:F62–72.PubMedCrossRefGoogle Scholar
  40. 40.
    Textor SC, Lerman L. Renovascular hypertension and ischemic nephropathy. Am J Hypertens. 2010;23:1159–69.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Anderson WP, Woods RL, Gao Y. Renovascular hypertension: information from experiments using conscious dogs. Clin Exp Pharmacol Physiol. 1991;18:29–32.PubMedCrossRefGoogle Scholar
  42. 42.
    Zhu XY, Chade AR, Rodriguez-Porcel M, et al. Cortical microvascular remodeling in the stenotic kidney: role of increased oxidative stress. Arterioscler Thromb Vasc Biol. 2004;24:1854–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Rognant N, Rouviere O, Janier M, et al. Hemodynamic responses to acute and gradual renal artery stenosis in pigs. Am J Hypertens. 2010;23:1216–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Schoenberg SO, Bock M, Kallinowski F, Just A. Correlation of hemodynamic impact and morphologic degree of renal artery stenosis in a canine model. J Am Soc Nephrol. 2000;11:2190–8.PubMedGoogle Scholar
  45. 45.
    Anderson WP, Johnston CI, Korner PI. Acute renal haemodynamic and renin-angiotensin system responses to graded renal artery stenosis in the dog. J Physiol. 1979;287:231–45.PubMedCentralPubMedGoogle Scholar
  46. 46.
    Evans RG, Eppel GA, Michaels S, et al. Multiple mechanisms act to maintain kidney oxygenation during renal ischemia in anesthetized rabbits. Am J Physiol Renal Physiol. 2010;298:F1235–43.PubMedCrossRefGoogle Scholar
  47. 47.
    Evans RG, Gardiner BS, Smith DW, O’Connor PM. Methods for studying the physiology of kidney oxygenation. Clin Exp Pharmacol Physiol. 2008;35:1405–12.PubMedCrossRefGoogle Scholar
  48. 48.
    Djamali A, Sadowski EA, Muehrer RJ, et al. BOLD-MRI assessment of intrarenal oxygenation and oxidative stress in patients with chronic kidney allograft dysfunction. Am J Physiol Renal Physiol. 2007;292:F513–22.PubMedCrossRefGoogle Scholar
  49. 49.
    Rognant N, Guebre-Egziabher F, Bacchetta J, et al. Evolution of renal oxygen content measured by BOLD MRI downstream a chronic renal artery stenosis. Nephrol Dial Transplant. 2011;26:1205–10.PubMedCrossRefGoogle Scholar
  50. 50.
    Evans RG, Leong CL, Anderson WP, O’Connor PM. Don’t be so BOLD: potential limitations in the use of BOLD MRI for studies of renal oxygenation. Kidney Int. 2007;71:1327–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Warner L, Glockner JF, Woollard J, Textor SC, Romero JC, Lerman LO. Determinations of renal cortical and medullary oxygenation using blood oxygen level-dependent magnetic resonance imaging and selective diuretics. Invest Radiol. 2011;46:41–7.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Juillard L, Lerman LO, Kruger DG, et al. Blood oxygen level-dependent measurement of acute intra-renal ischemia. Kidney Int. 2004;65:944–50.PubMedCrossRefGoogle Scholar
  53. 53.
    Warner L, Gomez SI, Bolterman R, et al. Regional decreases in renal oxygenation during graded acute renal arterial stenosis: a case for renal ischemia. Am J Physiol Regul Integr Comp Physiol. 2009;296:R67–71.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Gardiner BS, Smith DW, O’Connor PM, Evans RG. A mathematical model of diffusional shunting of oxygen from arteries to veins in the kidney. Am J Physiol Renal Physiol. 2011;300:F1339–52.PubMedCrossRefGoogle Scholar
  55. 55.
    Evans RG, Fitzgerald SM. Nitric oxide and superoxide in the renal medulla: a delicate balancing act. Curr Opin Nephrol Hypertens. 2005;14:9–15.PubMedCrossRefGoogle Scholar
  56. 56.
    Majid DS, Nishiyama A, Jackson KE, Castillo A. Superoxide scavenging attenuates renal responses to ANG II during nitric oxide synthase inhibition in anesthetized dogs. Am J Physiol Renal Physiol. 2005;288:F412–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Anderson WP, Korner PI, Johnston CI. Acute angiotensin II-mediated restoration of distal renal artery pressure in renal artery stenosis and its relationship to the development of sustained one-kidney hypertension in conscious dogs. Hypertension. 1979;1:292–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Anderson WP, Denton KM, Woods RL, Alcorn D. Angiotensin II and the maintenance of GFR and renal blood flow during renal artery narrowing. Kidney Int Suppl. 1990;30:S109–13.PubMedGoogle Scholar
  59. 59.
    Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 2007;59:251–87.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Navar LG, Prieto MC, Satou R, Kobori H. Intrarenal angiotensin II and its contribution to the genesis of chronic hypertension. Curr Opin Pharmacol. 2011;11:180–6.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Chade AR, Bentley MD, Zhu X, et al. Antioxidant intervention prevents renal neovascularization in hypercholesterolemic pigs. J Am Soc Nephrol. 2004;15:1816–25.PubMedCrossRefGoogle Scholar
  62. 62.
    Chade AR, Krier JD, Galili O, Lerman A, Lerman LO. Role of renal cortical neovascularization in experimental hypercholesterolemia. Hypertension. 2007;50:729–36.PubMedCrossRefGoogle Scholar
  63. 63.
    Urbieta-Caceres VH, Lavi R, Zhu XY, et al. Early atherosclerosis aggravates the effect of renal artery stenosis on the swine kidney. Am J Physiol Renal Physiol. 2010;299:F135–40.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Lerman LO, Taler SJ, Textor SC, Sheedy 2nd PF, Stanson AW, Romero JC. Computed tomography-derived intrarenal blood flow in renovascular and essential hypertension. Kidney Int. 1996;49:846–54.PubMedCrossRefGoogle Scholar
  65. 65.
    Eirin A, Zhu XY, Urbieta-Caceres VH, et al. Persistent kidney dysfunction in swine renal artery stenosis correlates with outer cortical microvascular remodeling. Am J Physiol Renal Physiol. 2011;300:F1394–401.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Chade AR, Krier JD, Rodriguez-Porcel M, et al. Comparison of acute and chronic antioxidant interventions in experimental renovascular disease. Am J Physiol Renal Physiol. 2004;286:F1079–86.PubMedCrossRefGoogle Scholar
  67. 67.
    Favreau F, Zhu XY, Krier JD, et al. Revascularization of swine renal artery stenosis improves renal function but not the changes in vascular structure. Kidney Int. 2010;78:1110–8.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Edgley AJ, Tare M, Evans RG, Skordilis C, Parkington HC. In vivo regulation of endothelium-dependent vasodilation in the rat renal circulation and the effect of streptozotocin-induced diabetes. Am J Physiol Regul Integr Comp Physiol. 2008;295:829–39.CrossRefGoogle Scholar
  69. 69.
    Sigmon DH, Beierwaltes WH. Nitric oxide influences blood flow distribution in renovascular hypertension. Hypertension. 1994;23:I34–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Wierema TK, Houben AJ, Kroon AA, et al. Nitric oxide dependence of renal blood flow in patients with renal artery stenosis. J Am Soc Nephrol. 2001;12:1836–43.PubMedGoogle Scholar
  71. 71.
    Tokuyama H, Hayashi K, Matsuda H, et al. Stenosis-dependent role of nitric oxide and prostaglandins in chronic renal ischemia. Am J Physiol Renal Physiol. 2002;282:F859–65.PubMedGoogle Scholar
  72. 72.
    Sigmon DH, Beierwaltes WH. Degree of renal artery stenosis alters nitric oxide regulation of renal hemodynamics. J Am Soc Nephrol. 1994;5:1369–77.PubMedGoogle Scholar
  73. 73.
    Turkstra E, Braam B, Koomans HA. Impaired renal blood flow autoregulation in two-kidney, one-clip hypertensive rats is caused by enhanced activity of nitric oxide. J Am Soc Nephrol. 2000;11:847–55.PubMedGoogle Scholar
  74. 74.
    Evans RG, Head GA, Eppel GA, Burke SL, Rajapakse NW. Angiotensin II and neurohumoral control of the renal medullary circulation. Clin Exp Pharmacol Physiol. 2010;37:e58–69.PubMedCrossRefGoogle Scholar
  75. 75.
    Duke LM, Widdop RE, Kett MM, Evans RG. AT(2) receptors mediate tonic renal medullary vasoconstriction in renovascular hypertension. Br J Pharmacol. 2005;144:486–92.PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Bivol LM, Vagnes OB, Iversen BM. The renal vascular response to ANG II injection is reduced in the non-clipped kidney of two-kidney, one-clip hypertension. Am J Physiol Renal Physiol. 2005;289:F393–400.PubMedCrossRefGoogle Scholar
  77. 77.
    Palm F, Onozato M, Welch WJ, Wilcox CS. Blood pressure, blood flow, and oxygenation in the clipped kidney of chronic 2-kidney, 1-clip rats: effects of tempol and Angiotensin blockade. Hypertension. 2010;55:298–304.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Palm F, Connors SG, Mendonca M, Welch WJ, Wilcox CS. Angiotensin II type 2 receptors and nitric oxide sustain oxygenation in the clipped kidney of early Goldblatt hypertensive rats. Hypertension. 2008;51:345–51.PubMedCrossRefGoogle Scholar
  79. 79.
    Johansson M, Elam M, Rundqvist B, et al. Increased sympathetic nerve activity in renovascular hypertension. Circulation. 1999;99:2537–42.PubMedCrossRefGoogle Scholar
  80. 80.
    Burke SL, Head GA, Lambert GW, Evans RG. Renal sympathetic neuroeffector function in renovascular and angiotensin II-dependent hypertension in rabbits. Hypertension. 2007;49:932–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Evans RG, Burke SL, Lambert GW, Head GA. Renal responses to acute reflex activation of renal sympathetic nerve activity and renal denervation in secondary hypertension. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1247–56.PubMedCrossRefGoogle Scholar
  82. 82.
    Nangaku M, Fujita T. Activation of the renin-angiotensin system and chronic hypoxia of the kidney. Hypertens Res. 2008;31:175–84.PubMedCrossRefGoogle Scholar
  83. 83.
    Warner GM, Cheng J, Knudsen BE, et al. Genetic deficiency of Smad3 protects the kidneys from atrophy and interstitial fibrosis in 2K1C hypertension. Am J Physiol Renal Physiol. 2012;302:F1455–64.PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Huang XR, Chung AC, Yang F, et al. Smad3 mediates cardiac inflammation and fibrosis in angiotensin II-induced hypertensive cardiac remodeling. Hypertension. 2010;55:1165–71.PubMedCrossRefGoogle Scholar
  85. 85.
    Rodriguez-Vita J, Sanchez-Lopez E, Esteban V, Ruperez M, Egido J, Ruiz-Ortega M. Angiotensin II activates the Smad pathway in vascular smooth muscle cells by a transforming growth factor-beta-independent mechanism. Circulation. 2005;111:2509–17.PubMedCrossRefGoogle Scholar
  86. 86.
    Chade AR, Zhu XY, Grande JP, Krier JD, Lerman A, Lerman LO. Simvastatin abates development of renal fibrosis in experimental renovascular disease. J Hypertens. 2008;26:1651–60.PubMedCrossRefGoogle Scholar
  87. 87.
    Lerman LO, Nath KA, Rodriguez-Porcel M, et al. Increased oxidative stress in experimental renovascular hypertension. Hypertension. 2001;37:541–6.PubMedCrossRefGoogle Scholar
  88. 88.
    Kopkan L, Castillo A, Navar LG, Majid DS. Enhanced superoxide generation modulates renal function in ANG II-induced hypertensive rats. Am J Physiol Renal Physiol. 2006;290:F80–6.PubMedCrossRefGoogle Scholar
  89. 89.
    Polichnowski AJ, Jin C, Yang C, Cowley Jr AW. Role of renal perfusion pressure versus angiotensin II on renal oxidative stress in angiotensin II-induced hypertensive rats. Hypertension. 2010;55:1425–30.PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    De Miguel C, Guo C, Lund H, Feng D, Mattson DL. Infiltrating T lymphocytes in the kidney increase oxidative stress and participate in the development of hypertension and renal disease. Am J Physiol Renal Physiol. 2011;300:F734–42.PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Chen Y, Gill PS, Welch WJ. Oxygen availability limits renal NADPH-dependent superoxide production. Am J Physiol Renal Physiol. 2005;289:F749–53.PubMedCrossRefGoogle Scholar
  92. 92.
    Hoffman DL, Brookes PS. Oxygen sensitivity of mitochondrial reactive oxygen species generation depends on metabolic conditions. J Biol Chem. 2009;284:16236–45.PubMedCentralPubMedCrossRefGoogle Scholar
  93. 93.
    Li N, Yi FX, Spurrier JL, Bobrowitz CA, Zou AP. Production of superoxide through NADH oxidase in thick ascending limb of Henle’s loop in rat kidney. Am J Physiol Renal Physiol. 2002;282:F1111–9.PubMedGoogle Scholar
  94. 94.
    Mohazzab HK, Kaminski PM, Wolin MS. Lactate and PO2 modulate superoxide anion production in bovine cardiac myocytes: potential role of NADH oxidase. Circulation. 1997;96:614–20.CrossRefGoogle Scholar
  95. 95.
    Zhou L, Stanley WC, Saidel GM, Yu X, Cabrera ME. Regulation of lactate production at the onset of ischaemia is independent of mitochondrial NADH/NAD+: insights from in silico studies. J Physiol. 2005;569:925–37.PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Chiang CK, Tanaka T, Nangaku M. Dysregulated oxygen metabolism of the kidney by uremic toxins: review. J Ren Nutr. 2012;22:77–80.PubMedCrossRefGoogle Scholar
  97. 97.
    Welch WJ, Mendonca M, Aslam S, Wilcox CS. Roles of oxidative stress and AT1 receptors in renal hemodynamics and oxygenation in the postclipped 2K,1C kidney. Hypertension. 2003;41:692–6.PubMedCrossRefGoogle Scholar
  98. 98.
    Gloviczki ML, Glockner JF, Lerman LO, et al. Preserved oxygenation despite reduced blood flow in poststenotic kidneys in human atherosclerotic renal artery stenosis. Hypertension. 2010;55:961–6.PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Gloviczki ML, Glockner JF, Crane JA, et al. Blood oxygen level-dependent magnetic resonance imaging identifies cortical hypoxia in severe renovascular disease. Hypertension. 2011;58:1066–72.PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Gloviczki ML, Lerman LO, Textor SC. Blood oxygen level-dependent (BOLD) MRI in renovascular hypertension. Curr Hypertens Rep. 2011;13:370–7.PubMedCrossRefGoogle Scholar
  101. 101.
    Palm F, Nordquist L. Renal tubulointerstitial hypoxia: cause and consequence of kidney dysfunction. Clin Exp Pharmacol Physiol. 2011;38:424–30.PubMedCentralCrossRefGoogle Scholar
  102. 102.
    Palm F, Nordquist L. Renal oxidative stress, oxygenation, and hypertension. Am J Physiol Regul Integr Comp Physiol. 2011;301:R1229–41.PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    Gomez SI, Warner L, Haas JA, et al. Increased hypoxia and reduced renal tubular response to furosemide detected by BOLD magnetic resonance imaging in swine renovascular hypertension. Am J Physiol Renal Physiol. 2009;297:F981–6.PubMedCentralPubMedCrossRefGoogle Scholar
  104. 104.
    Nakagawa T, Lan HY, Zhu HJ, Kang DH, Schreiner GF, Johnson RJ. Differential regulation of VEGF by TGF-beta and hypoxia in rat proximal tubular cells. Am J Physiol Renal Physiol. 2004;287:F658–64.PubMedCrossRefGoogle Scholar
  105. 105.
    Olszewska-Pazdrak B, Hein TW, Olszewska P, Carney DH. Chronic hypoxia attenuates VEGF signaling and angiogenic responses by downregulation of KDR in human endothelial cells. Am J Physiol Cell Physiol. 2009;296:C1162–70.PubMedCrossRefGoogle Scholar
  106. 106.
    Mayer G. Capillary rarefaction, hypoxia, VEGF and angiogenesis in chronic renal disease. Nephrol Dial Transplant. 2011;26:1132–7.PubMedCentralPubMedCrossRefGoogle Scholar
  107. 107.
    Chade AR, Kelsen S. Reversal of renal dysfunction by targeted administration of VEGF into the stenotic kidney: a novel potential therapeutic approach. Am J Physiol Renal Physiol. 2012;302:F1342–50.PubMedCentralPubMedCrossRefGoogle Scholar
  108. 108.
    Chade AR. Renovascular disease, microcirculation, and the progression of renal injury: role of angiogenesis. Am J Physiol Regul Integr Comp Physiol. 2011;300:R783–90.PubMedCentralPubMedCrossRefGoogle Scholar
  109. 109.
    Nangaku M, Rosenberger C, Heyman SN, Eckardt K-U. HIF regulation in kidney disease. Clin Exp Pharmacol Physiol. 2013;40(2):148–57.PubMedCrossRefGoogle Scholar
  110. 110.
    Bernhardt WM, Campean V, Kany S, et al. Preconditional activation of hypoxia-inducible factors ameliorates ischemic acute renal failure. J Am Soc Nephrol. 2006;17:1970–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Haase VH. Oxygen regulates epithelial-to-mesenchymal transition: insights into molecular mechanisms and relevance to disease. Kidney Int. 2009;76:492–9.PubMedCentralPubMedCrossRefGoogle Scholar
  112. 112.
    Nangaku M, Inagi R, Miyata T, Fujita T. Angiotensin-induced hypoxia in the kidney: functional and structural changes of the renal circulation. Adv Exp Med Biol. 2007;618:85–99.PubMedCrossRefGoogle Scholar
  113. 113.
    Heyman SN, Khamaisi M, Rosen S, Rosenberger C. Renal parenchymal hypoxia, hypoxia response and the progression of chronic kidney disease. Am J Nephrol. 2008;28:998–1006.PubMedCrossRefGoogle Scholar
  114. 114.
    Fine LG, Norman JT. Chronic hypoxia as a mechanism of progression of chronic kidney diseases: from hypothesis to novel therapeutics. Kidney Int. 2008;74:867–72.PubMedCrossRefGoogle Scholar
  115. 115.
    Norman JT, Clark IM, Garcia PL. Hypoxia promotes fibrogenesis in human renal fibroblasts. Kidney Int. 2000;58:2351–66.PubMedCrossRefGoogle Scholar
  116. 116.
    Abramov AY, Scorziello A, Duchen MR. Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J Neurosci. 2007;27:1129–38.PubMedCrossRefGoogle Scholar
  117. 117.
    Takumi T, Mathew V, Barsness GW, et al. The association between renal atherosclerotic plaque characteristics and renal function before and after renal artery intervention. Mayo Clin Proc. 2011;86:1165–72.PubMedCentralPubMedCrossRefGoogle Scholar
  118. 118.
    Kelsen S, Hall JE, Chade AR. Endothelin-A receptor blockade slows the progression of renal injury in experimental renovascular disease. Am J Physiol Renal Physiol. 2011;301:F218–25.PubMedCentralPubMedCrossRefGoogle Scholar
  119. 119.
    Kelsen S, He X, Chade AR. Early superoxide scavenging accelerates renal microvascular rarefaction and damage in the stenotic Kidney. Am J Physiol Renal Physiol. 2012;303:F576–83.PubMedCentralPubMedCrossRefGoogle Scholar
  120. 120.
    Iliescu R, Fernandez SR, Kelsen S, Maric C, Chade AR. Role of renal microcirculation in experimental renovascular disease. Nephrol Dial Transplant. 2010;25:1079–87.PubMedCentralPubMedCrossRefGoogle Scholar
  121. 121.
    Chade AR, Zhu X, Lavi R, et al. Endothelial progenitor cells restore renal function in chronic experimental renovascular disease. Circulation. 2009;119:547–57.PubMedCentralPubMedCrossRefGoogle Scholar
  122. 122.
    Ebrahimi B, Li Z, Eirin A, Zhu XY, Textor SC, Lerman LO. Addition of endothelial progenitor cells to renal revascularization restores medullary tubular oxygen consumption in swine renal artery stenosis. Am J Physiol Renal Physiol. 2012;302:F1478–85.PubMedCentralPubMedCrossRefGoogle Scholar
  123. 123.
    Zhu XY, Chade AR, Krier JD, et al. The chemokine monocyte chemoattractant protein-1 contributes to renal dysfunction in swine renovascular hypertension. J Hypertens. 2009;27:2063–73.PubMedCentralPubMedCrossRefGoogle Scholar
  124. 124.
    Gullans SR, Hebert SC. Metabolic basis of ion transport. In: Brenner BM, editor. Brenner and Rector’s the kidney. 5th ed. Philadelphia: WB Saunders Company; 1996.Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Department of PhysiologyMonash UniversityMelbourneAustralia
  2. 2.Department of MedicineGeorgia Regents UniversityAugustaUSA

Personalised recommendations