Advertisement

Interaction Between Stenotic and Contralateral Kidneys: Unique Features of Each in Unilateral Disease

  • Luis A. Juncos
  • Kiran B. ChandrashekarEmail author
  • Arnaldo F. Lopez-Ruiz
  • Luis I. Juncos
Chapter

Abstract

Unilateral renal artery stenosis causes angiotensin II-dependent hypertension and leads to injury of the stenosed ipsilateral, as well as the non-stenosed contralateral kidney. While the hypertension is triggered by hypoperfusion-dependent renin release of the stenotic kidney, dysfunction of the contralateral kidney is what permits the blood pressure to remain elevated, and may even be the driving force behind the hypertension in the late stages. The differential function and crosstalk between the two kidneys are determined by the interaction among several neurohormonal pathways. Understanding the simultaneous processes taking place in both the ipsilateral and the contralateral kidneys should provide a better insight not only on the hypertensive process, but also on the mechanisms to progressive renal injury in this condition.

Keywords

Ipsilateral Kidney Contralateral Kidney Intrarenal Hemodynamics Renorenal reflex Glomerulosclerosis Renal Crosstalk 

References

  1. 1.
    Navar LG, et al. Unraveling the mystery of Goldblatt hypertension. News Physiol Sci. 1998;13:170–6.PubMedGoogle Scholar
  2. 2.
    Martinez-Maldonado M. Pathophysiology of renovascular hypertension. Hypertension. 1991;17(5):707–19.PubMedCrossRefGoogle Scholar
  3. 3.
    Chade AR, et al. Distinct renal injury in early atherosclerosis and renovascular disease. Circulation. 2002;106(9):1165–71.PubMedCrossRefGoogle Scholar
  4. 4.
    Kobori H, et al. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 2007;59(3):251–87.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Navar LG, Kobori H, Prieto-Carrasquero M. Intrarenal angiotensin II and hypertension. Curr Hypertens Rep. 2003;5(2):135–43.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Prieto-Carrasquero MC, et al. Enhancement of collecting duct renin in angiotensin II-dependent hypertensive rats. Hypertension. 2004;44(2):223–9.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Navar LG, et al. Intratubular renin-angiotensin system in hypertension. Hypertension. 2011;57(3):355–62.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Largo R, et al. Angiotensin-converting enzyme is upregulated in the proximal tubules of rats with intense proteinuria. Hypertension. 1999;33(2):732–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Gonzalez-Villalobos RA, et al. Intrarenal angiotensin-converting enzyme induces hypertension in response to angiotensin I infusion. J Am Soc Nephrol. 2011;22(3):449–59.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Navar LG, et al. Renal responses to AT1 receptor blockade. Am J Hypertens. 2000;13(1 Pt 2):45S–54.PubMedCrossRefGoogle Scholar
  11. 11.
    Anderson WP, Kline RL, Woods RL. Systemic and renal hemodynamic changes during acute unilateral renal arterial stenosis. Am J Physiol Heart Circ Physiol. 1985;249(5):H956–67.Google Scholar
  12. 12.
    Anderson WP, Ramsey DE, Takata M. Development of hypertension from unilateral renal artery stenosis in conscious dogs. Hypertension. 1990;16(4):441–51.PubMedCrossRefGoogle Scholar
  13. 13.
    DeForrest JM, et al. Separate renal function studies in conscious dogs with renovascular hypertension. Am J Physiol. 1978;235(4):F310–6.PubMedGoogle Scholar
  14. 14.
    Zimmerman BG, Mommsen C, Kraft E. Sympathetic and renin-angiotensin system influence on blood pressure and renal blood flow of two-kidney, one clip Goldblatt hypertensive dog. Hypertension. 1980;2(1):53–62.PubMedCrossRefGoogle Scholar
  15. 15.
    Ploth DW, et al. Autoregulation and tubuloglomerular feedback in normotensive and hypertensive rats. Kidney Int. 1977;12(4):253–67.PubMedCrossRefGoogle Scholar
  16. 16.
    Ploth DW, et al. Impaired renal blood flow and cortical pressure autoregulation in contralateral kidneys of Goldblatt hypertensive rats. Hypertension. 1981;3(1):67–74.PubMedCrossRefGoogle Scholar
  17. 17.
    Himmelstein SI, Klotman PE. The role of thromboxane in two-kidney, one-clip Goldblatt hypertension in rats. Am J Physiol. 1989;257(2 Pt 2):F190–6.PubMedGoogle Scholar
  18. 18.
    Kimura G, et al. Glomerular hypertension in renovascular hypertensive patients. Kidney Int. 1991;39(5):966–72.PubMedCrossRefGoogle Scholar
  19. 19.
    Azar S, et al. Single-nephron pressures, flows, and resistances in hypertensive kidneys with nephrosclerosis. Kidney Int. 1977;12(1):28–40.PubMedCrossRefGoogle Scholar
  20. 20.
    Navar LG. Renal autoregulation: perspectives from whole kidney and single nephron studies. Am J Physiol. 1978;234(5):F357–70.PubMedGoogle Scholar
  21. 21.
    Leertouwer TC, et al. Functional effects of renal artery stent placement on treated and contralateral kidneys. Kidney Int. 2002;62(2):574–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Koivuviita N, et al. The effect of revascularization of renal artery stenosis on renal perfusion in patients with atherosclerotic renovascular disease. Nephrol Dial Transplant. 2012;27(10):3843–8.PubMedCrossRefGoogle Scholar
  23. 23.
    La Batide-Alanore A, et al. Split renal function outcome after renal angioplasty in patients with unilateral renal artery stenosis. J Am Soc Nephrol. 2001;12(6):1235–41.PubMedGoogle Scholar
  24. 24.
    Kotliar C, et al. Local and systemic cellular immunity in early renal artery atherosclerosis. Clin J Am Soc Nephrol. 2012;7(2):224–30.PubMedCrossRefGoogle Scholar
  25. 25.
    Dibona G. The functions of the renal nerves. In: Reviews of physiology, biochemistry and pharmacology, vol. 94. Berlin/Heidelberg: Springer; 1982. p. 75–181.Google Scholar
  26. 26.
    Gao SA, et al. Reduced spontaneous baroreceptor sensitivity in patients with renovascular hypertension. J Hypertens. 2002;20(1):111–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Grisk O, Rettig R. Interactions between the sympathetic nervous system and the kidneys in arterial hypertension. Cardiovasc Res. 2004;61(2):238–46.PubMedCrossRefGoogle Scholar
  28. 28.
    Johansson M, et al. Increased sympathetic nerve activity in renovascular hypertension. Circulation. 1999;99(19):2537–42.PubMedCrossRefGoogle Scholar
  29. 29.
    Faber JE, Brody MJ. Afferent renal nerve-dependent hypertension following acute renal artery stenosis in the conscious rat. Circ Res. 1985;57(5):676–88.PubMedCrossRefGoogle Scholar
  30. 30.
    Kopp UC, Buckley-Bleiler RL. Impaired renorenal reflexes in two-kidney, one clip hypertensive rats. Hypertension. 1989;14(4):445–52.PubMedCrossRefGoogle Scholar
  31. 31.
    Head GA, Burke SL. Comparison of renal sympathetic baroreflex effects of rilmenidine and alpha-methylnoradrenaline in the ventrolateral medulla of the rabbit. J Hypertens. 2000;18(9):1263–76.PubMedCrossRefGoogle Scholar
  32. 32.
    Katholi RE, et al. Importance of the renal nerves in established two-kidney, one clip Goldblatt hypertension. Hypertension. 1982;4(3 Pt 2):166–74.PubMedGoogle Scholar
  33. 33.
    McElroy ND, Zimmerman BG. Characterization of intrarenal arterial adrenergic receptors in renovascular hypertension. Hypertension. 1989;13(6 Pt 2):851–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Sasser JM, Pollock JS, Pollock DM. Renal endothelin in chronic angiotensin II hypertension. Am J Physiol Regul Integr Comp Physiol. 2002;283(1):R243–8.PubMedGoogle Scholar
  35. 35.
    Diekmann F, et al. Regulation of the renal endothelin system in the two-kidney, one clip renal hypertensive rat. J Cardiovasc Pharmacol. 2000;36(5 Suppl 1):S191–4.PubMedCrossRefGoogle Scholar
  36. 36.
    Kelsen S, Hall JE, Chade AR. Endothelin-A receptor blockade slows the progression of renal injury in experimental renovascular disease. Am J Physiol Renal Physiol. 2011;301(1):F218–25.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Hocher B, et al. ETA receptor blockade induces fibrosis of the clipped kidney in two-kidney-one-clip renovascular hypertensive rats. J Hypertens. 2000;18(12):1807–14.PubMedCrossRefGoogle Scholar
  38. 38.
    Kassab S, et al. Effects of endothelin-A receptor antagonism on bilateral renal function in renovascular hypertensive rats. Fundam Clin Pharmacol. 2001;15(6):379–85.PubMedCrossRefGoogle Scholar
  39. 39.
    Lerman LO, et al. Increased oxidative stress in experimental renovascular hypertension. Hypertension. 2001;37(2):541–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Krier JD, et al. Vascular responses in vivo to 8-epiPGF2α in normal and hypercholesterolemic pigs. Am J Physiol Regul Integr Comp Physiol. 2002;283(2):R303–8.PubMedGoogle Scholar
  41. 41.
    Wilcox CS. Oxidative stress and nitric oxide deficiency in the kidney: a critical link to hypertension? Am J Physiol Regul Integr Comp Physiol. 2005;289(4):R913–35.PubMedCrossRefGoogle Scholar
  42. 42.
    Wilcox CS, Cardozo J, Welch WJ. AT1 and TxA2/PGH2 receptors maintain hypertension throughout 2K,1C Goldblatt hypertension in the rat. Am J Physiol Regul Integr Comp Physiol. 1996;271(4):R891–6.Google Scholar
  43. 43.
    Ruilope L, et al. Effect of furosemide on renal function in the stenotic and contralateral kidneys of patients with renovascular hypertension. Hypertension. 1983;5(6 Pt 3):V43–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Imanishi M, et al. Prostaglandin I(2)/E(2) ratios in unilateral renovascular hypertension of different severities. Hypertension. 2001;38(1):23–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Milot A, et al. Prostaglandins and renal function in hypertensive patients with unilateral renal artery stenosis and patients with essential hypertension. J Hypertens. 1996;14(6):765–71.PubMedCrossRefGoogle Scholar
  46. 46.
    Kalaitzis C, et al. Role of eicosanoids of the contralateral kidney in maintenance of two-kidney, one-clip renovascular hypertension in rats. Scand J Urol Nephrol. 2007;41(5):362–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Tokuyama H, et al. Stenosis-dependent role of nitric oxide and prostaglandins in chronic renal ischemia. Am J Physiol Renal Physiol. 2002;282(5):F859–65.PubMedGoogle Scholar
  48. 48.
    Fujino T, et al. Decreased susceptibility to renovascular hypertension in mice lacking the prostaglandin I2 receptor IP. J Clin Invest. 2004;114(6):805–12.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Sigmon DH, Beierwaltes WH. Renal nitric oxide and angiotensin II interaction in renovascular hypertension. Hypertension. 1993;22(2):237–42.PubMedCrossRefGoogle Scholar
  50. 50.
    Sigmon DH, Beierwaltes WH. Influence of nitric oxide in the chronic phase of two-kidney, one clip renovascular hypertension. Hypertension. 1998;31(2):649–56.PubMedCrossRefGoogle Scholar
  51. 51.
    Sigmon DH, Beierwaltes WH. Degree of renal artery stenosis alters nitric oxide regulation of renal hemodynamics. J Am Soc Nephrol. 1994;5(6):1369–77.PubMedGoogle Scholar
  52. 52.
    Palm F, et al. Angiotensin II type 2 receptors and nitric oxide sustain oxygenation in the clipped kidney of early Goldblatt hypertensive rats. Hypertension. 2008;51(2):345–51.PubMedCrossRefGoogle Scholar
  53. 53.
    Wierema TK, et al. Nitric oxide dependence of renal blood flow in patients with renal artery stenosis. J Am Soc Nephrol. 2001;12(9):1836–43.PubMedGoogle Scholar
  54. 54.
    Turkstra E, et al. Increased availability of nitric oxide leads to enhanced nitric oxide dependency of tubuloglomerular feedback in the contralateral kidney of rats with 2-kidney, 1-clip Goldblatt hypertension. Hypertension. 1999;34(4):679–84.PubMedCrossRefGoogle Scholar
  55. 55.
    Zhu XY, et al. The chemokine monocyte chemoattractant protein-1 contributes to renal dysfunction in swine renovascular hypertension. J Hypertens. 2009;27(10):2063–73.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Sanchez-Elsner T, et al. Synergistic cooperation between hypoxia and transforming growth factor-beta pathways on human vascular endothelial growth factor gene expression. J Biol Chem. 2001;276(42):38527–35.PubMedCrossRefGoogle Scholar
  57. 57.
    Textor SC, Lerman L. Renovascular hypertension and ischemic nephropathy. Am J Hypertens. 2010;23(11):1159–69.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Warner GM, et al. Genetic deficiency of Smad3 protects the kidneys from atrophy and interstitial fibrosis in 2K1C hypertension. Am J Physiol Renal Physiol. 2012;302(11):F1455–64.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Lerman LO, Textor SC, Grande JP. Mechanisms of tissue injury in renal artery stenosis: ischemia and beyond. Prog Cardiovasc Dis. 2009;52(3):196–203.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Wolf G, et al. Regulation of glomerular TGF-beta expression in the contralateral kidney of two-kidney, one-clip hypertensive rats. J Am Soc Nephrol. 1998;9(5):763–72.PubMedGoogle Scholar
  61. 61.
    Cheng J, et al. Temporal analysis of signaling pathways activated in a murine model of two-kidney, one-clip hypertension. Am J Physiol Renal Physiol. 2009;297(4):F1055–68.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Haase VH. Pathophysiological consequences of HIF activation: HIF as a modulator of fibrosis. Ann N Y Acad Sci. 2009;1177:57–65.PubMedCrossRefGoogle Scholar
  63. 63.
    Chade AR, et al. Simvastatin promotes angiogenesis and prevents microvascular remodeling in chronic renal ischemia. FASEB J. 2006;20(10):1706–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 2001;81(2):807–69.PubMedGoogle Scholar
  65. 65.
    Chin BY, et al. Stimulation of pro-alpha(1)(I) collagen by TGF-beta(1) in mesangial cells: role of the p38 MAPK pathway. Am J Physiol Renal Physiol. 2001;280(3):F495–504.PubMedGoogle Scholar
  66. 66.
    Eirin A, et al. Inflammatory and injury signals released from the post-stenotic human kidney. Eur Heart J. 2012;6:6.Google Scholar
  67. 67.
    Chade AR, et al. Pathways of renal fibrosis and modulation of matrix turnover in experimental hypercholesterolemia. Hypertension. 2005;46(4):772–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Truong LD, et al. Experimental chronic renal ischemia: morphologic and immunologic studies. Kidney Int. 1992;41(6):1676–89.PubMedCrossRefGoogle Scholar
  69. 69.
    Makino H, Sugiyama H, Kashihara N. Apoptosis and extracellular matrix-cell interactions in kidney disease. Kidney Int Suppl. 2000;77:S67–75.PubMedCrossRefGoogle Scholar
  70. 70.
    Mai M, et al. Early interstitial changes in hypertension-induced renal injury. Hypertension. 1993;22(5):754–65.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Luis A. Juncos
    • 1
  • Kiran B. Chandrashekar
    • 2
    Email author
  • Arnaldo F. Lopez-Ruiz
    • 3
  • Luis I. Juncos
    • 4
  1. 1.Departments of Medicine, Nephrology, and Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonUSA
  2. 2.Departments of Medicine and NephrologyUniversity of Mississippi Medical CenterJacksonUSA
  3. 3.Department of MedicineUniversity of Mississippi Medical CenterJacksonUSA
  4. 4.Department of MedicineJ. Robert Cade FoundationCordobaArgentina

Personalised recommendations