Advertisement

Tubulointerstitial Injury: Signaling Pathways, Inflammation, Fibrogenesis

  • Stella P. Hartono
  • Joseph P. GrandeEmail author
Chapter

Abstract

Renovascular hypertension (RVH) is an important cause of both renal and cardiovascular morbidity and mortality. Atherosclerosis is the most common etiology underlying the development of RVH. In the stenotic kidney, the development of interstitial fibrosis and tubular atrophy is associated with the influx of inflammatory cells. These morphologic alterations result from a complex interplay of several pathways involving the renin angiotensin system, oxidative stress, the TGF-β-Smad signaling pathway, and the mitogen-activated protein kinase (MAPK) pathway, leading to both local and systemic production of chemokines that promote ongoing inflammation and interstitial fibrosis. In this chapter, we will summarize recent human and experimental studies to determine how these signaling pathways interact and contribute to renal inflammation and fibrogenesis. Identification of these pathways will provide a mechanistic basis for the development of RVH and may provide the basis for novel therapeutic targets directed towards arresting the progression of renal disease in patients with renal artery stenosis.

Keywords

Renal artery stenosis TGF-Β MAPK Fibrosis Inflammation Macrophage CCL2 

References

  1. 1.
    Textor SC, Wilcox CS. Renal artery stenosis: a common, treatable cause of renal failure? Annu Rev Med. 2001;52:421–42.PubMedCrossRefGoogle Scholar
  2. 2.
    Garovic VD, Textor SC. Renovascular hypertension and ischemic nephropathy. Circulation. 2005;112(9):1362–74.PubMedCrossRefGoogle Scholar
  3. 3.
    Iglesias JI, Hamburger RJ, Feldman L, Kaufman JS. The natural history of incidental renal artery stenosis in patients with aortoiliac vascular disease. Am J Med. 2000;109(8):642–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Valabhji J, Robinson S, Poulter C, Robinson AC, Kong C, Henzen C, Gedroyc WM, Feher MD, Elkeles RS. Prevalence of renal artery stenosis in subjects with type 2 diabetes and coexistent hypertension. Diabetes Care. 2000;23(4):539–43.PubMedCrossRefGoogle Scholar
  5. 5.
    Textor SC. Managing renal arterial disease and hypertension. Curr Opin Cardiol. 2003;18(4):260–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Harrison DG, Guzik TJ, Lob HE, Madhur MS, Marvar PJ, Thabet SR, Vinh A, Weyand CM. Inflammation, immunity, and hypertension. Hypertension. 2011;57(2):132–40.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Stouffer GA, Pathak A, Rojas M. Unilateral renal artery stenosis causes a chronic vascular inflammatory response in ApoE mice. Trans Am Clin Climatol Assoc. 2010;121(252–64):64–6.Google Scholar
  8. 8.
    Oliver E, McGillicuddy F, Phillips C, Toomey S, Roche HM. The role of inflammation and macrophage accumulation in the development of obesity-induced type 2 diabetes mellitus and the possible therapeutic effects of long-chain n-3 PUFA. Proc Nutr Soc. 2010;69(2):232–43.PubMedCrossRefGoogle Scholar
  9. 9.
    Li J-J, Fang C-H, Jiang H, Huang C-X, Hui R-T, Chen M-Z. Time course of inflammatory response after renal artery stenting in patients with atherosclerotic renal stenosis. Clin Chim Acta. 2004;350(1–2):115–21.PubMedCrossRefGoogle Scholar
  10. 10.
    Brountzos EN, Tavernaraki K, Gouliamos AD, Degiannis D, Chaidaroglou A, Panagiotou I, Arsenis G, Kelekis D, Vlahakos D. Systemic inflammatory response to renal artery percutaneous angioplasty with stent placement and the risk for restenosis: a pilot study. J Vasc Interv Radiol. 2009;20(2):186–91.PubMedCrossRefGoogle Scholar
  11. 11.
    Schlager O, Amighi J, Haumer M, Sabeti S, Dick P, Mlekusch W, Loewe C, Koppensteiner R, Minar E, Schillinger M. Inflammation and adverse cardiovascular outcome in patients with renal artery stenosis and peripheral artery disease. Atherosclerosis. 2009;205(1):314–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Keddis MT, Garovic VD, Bailey KR, Wood CM, Raissian Y, Grande JP. Ischaemic nephropathy secondary to atherosclerotic renal artery stenosis: clinical and histopathological correlates. Nephrol Dial Transplant. 2010;25(11):3615–22.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Xie Q-y, Ming S, Yang T-l, Sun Z-L. Losartan reduces monocyte chemoattractant protein-1 expression in aortic tissues of 2K1C hypertensive rats. Int J Cardiol. 2006;110(1):60–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Cheng J, Zhou W, Warner GM, Knudsen BE, Garovic VD, Gray CE, Lerman LO, Platt JL, Romero JC, Textor SC, Nath KA, Grande JP. Temporal analysis of signaling pathways activated in a murine model of two-kidney, one-clip hypertension. Am J Physiol Renal Physiol. 2009;297(4):F1055–68.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Urbieta-Caceres VH, Lavi R, Zhu X-Y, Crane JA, Textor SC, Lerman A, Lerman LO. Early atherosclerosis aggravates the effect of renal artery stenosis on the swine kidney. Am J Physiol Renal Physiol. 2010;299(1):F135–40.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Chade AR, Rodriguez-Porcel M, Grande JP, Krier JD, Lerman A, Romero JC, Napoli C, Lerman LO. Distinct renal injury in early atherosclerosis and renovascular disease. Circulation. 2002;106(9):1165–71.PubMedCrossRefGoogle Scholar
  17. 17.
    Heo HJ, Yun MR, Jung KH, Lee JY, Park JY, Lee SJ, Bae SS, Lee WS, Kim CD. Endogenous angiotensin II enhances atherogenesis in apoprotein E-deficient mice with renovascular hypertension through activation of vascular smooth muscle cells. Life Sci. 2007;80(11):1057–63.PubMedCrossRefGoogle Scholar
  18. 18.
    Chade AR, Rodriguez-Porcel M, Grande JP, Zhu X, Sica V, Napoli C, Sawamura T, Textor SC, Lerman A, Lerman LO. Mechanisms of renal structural alterations in combined hypercholesterolemia and renal artery stenosis. Arterioscler Thromb Vasc Biol. 2003;23(7):1295–301.PubMedCrossRefGoogle Scholar
  19. 19.
    Lerman L, Textor SC. Pathophysiology of ischemic nephropathy. Urol Clin North Am. 2001;28(4):793–803, ix.PubMedCrossRefGoogle Scholar
  20. 20.
    Gloviczki M, Lerman L, Textor S. Blood oxygen level-dependent (BOLD) MRI in renovascular hypertension. Curr Hypertens Rep. 2011;13(5):370–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Zhu XY, Chade AR, Rodriguez-Porcel M, Bentley MD, Ritman EL, Lerman A, Lerman LO. Cortical microvascular remodeling in the stenotic kidney: role of increased oxidative stress. Arterioscler Thromb Vasc Biol. 2004;24(10):1854–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Raizada V, Skipper B, Luo W, Griffith J. Intracardiac and intrarenal renin-angiotensin systems: mechanisms of cardiovascular and renal effects. J Investig Med. 2007;55(7):341–59.PubMedCrossRefGoogle Scholar
  23. 23.
    Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 2007;59(3):251–87.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Lavoie JL, Sigmund CD. Minireview: overview of the renin-angiotensin system–an endocrine and paracrine system. Endocrinology. 2003;144(6):2179–83.PubMedCrossRefGoogle Scholar
  25. 25.
    Morikawa T, Imanishi M, Suzuki H, Okada N, Okumura M, Konishi Y, Yoshioka K, Takai S, Miyazaki M. Mast cell chymase in the ischemic kidney of severe unilateral renovascular hypertension. Am J Kidney Dis. 2005;45(3):e45–50.PubMedCrossRefGoogle Scholar
  26. 26.
    Wolf G. Renal injury due to renin-angiotensin-aldosterone system activation of the transforming growth factor-beta pathway. Kidney Int. 2006;70(11):1914–9.PubMedGoogle Scholar
  27. 27.
    Zhou Y, Poczatek MH, Berecek KH, Murphy-Ullrich JE. Thrombospondin 1 mediates angiotensin II induction of TGF-beta activation by cardiac and renal cells under both high and low glucose conditions. Biochem Biophys Res Commun. 2006;339(2):633–41.PubMedCrossRefGoogle Scholar
  28. 28.
    Leask A. TGFβ, cardiac fibroblasts, and the fibrotic response. Cardiovasc Res. 2007;74(2):207–12.PubMedCrossRefGoogle Scholar
  29. 29.
    Steinmetz OM, Sadaghiani S, Panzer U, Krebs C, Meyer-Schwesinger C, Streichert T, Fehr S, Hamming I, van Goor H, Stahl RAK, Wenzel U. Antihypertensive therapy induces compartment-specific chemokine expression and a Th1 immune response in the clipped kidney of Goldblatt hypertensive rats. Am J Physiol Renal Physiol. 2007;292(2):F876–87.PubMedCrossRefGoogle Scholar
  30. 30.
    Ouyang X, Le TH, Roncal C, Gersch C, Herrera-Acosta J, Rodriguez-Iturbe B, Coffman TM, Johnson RJ, Mu W. Th1 inflammatory response with altered expression of profibrotic and vasoactive mediators in AT1A and AT1B double-knockout mice. Am J Physiol Renal Physiol. 2005;289(4):F902–10.PubMedCrossRefGoogle Scholar
  31. 31.
    Cheng J, Grande JP. Transforming growth factor-beta signal transduction and progressive renal disease. Exp Biol Med. 2002;227:943–56.Google Scholar
  32. 32.
    Cheng J, Grande J. Transforming growth factor-beta and kidney dysfunction. J Organ Dysfunct. 2009;5(3):182–92.CrossRefGoogle Scholar
  33. 33.
    Grande JP, Warner GM, Walker HJ, Yusufi AN, Cheng J, Gray CE, Kopp JB, Nath KA. TGF-beta1 is an autocrine mediator of renal tubular epithelial cell growth and collagen IV production. Exp Biol Med. 2002;227(3):171–81.Google Scholar
  34. 34.
    Warner GM, Cheng J, Knudsen BE, Gray CE, Deibel A, Juskewitch JE, Lerman LO, Textor SC, Nath KA, Grande JP. Genetic deficiency of Smad3 protects the kidneys from atrophy and interstitial fibrosis in 2K1C hypertension. Am J Physiol Renal Physiol. 2012;302(11):F1455–64.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Nath KA, Croatt AJ, Warner GM, Grande JP. Genetic deficiency of Smad3 protects against murine ischemic acute kidney injury. Am J Physiol Renal Physiol. 2011;301:F436–42.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Sato M, Muragaki Y, Saika S, Roberts AB, Ooshima A. Targeted disruption of TGF-beta1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest. 2003;112(10):1486–94.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Wang W, Huang XR, Canlas E, Oka K, Truong LD, Deng C, Bhowmick NA, Ju W, Bottinger EP, Lan HY. Essential role of Smad3 in angiotensin II-induced vascular fibrosis. Circ Res. 2006;98(8):1032–9.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Ruiz-Ortega M, Rodríguez-Vita J, Sanchez-Lopez E, Carvajal G, Egido J. TGF-β signaling in vascular fibrosis. Cardiovasc Res. 2007;74(2):196–206.PubMedCrossRefGoogle Scholar
  39. 39.
    Kobayashi K, Yokote K, Fujimoto M, Yamashita K, Sakamoto A, Kitahara M, Kawamura H, Maezawa Y, Asaumi S, Tokuhisa T, Mori S, Saito Y. Targeted disruption of TGF-beta-Smad3 signaling leads to enhanced neointimal hyperplasia with diminished matrix deposition in response to vascular injury. Circ Res. 2005;96(8):904–12.PubMedCrossRefGoogle Scholar
  40. 40.
    Cheng J, Thompson MA, Walker HJ, Gray CE, Diaz Encarnacion MM, Warner GM, Grande JP. Differential regulation of mesangial cell mitogenesis by cAMP phosphodiesterase isozymes 3 and 4. Am J Physiol Renal Physiol. 2004;287(5):F940–53.PubMedCrossRefGoogle Scholar
  41. 41.
    Cheng J, Diaz Encarnacion MM, Warner GM, Gray CE, Nath KA, Grande JP. TGF-beta1 stimulates monocyte chemoattractant protein-1 expression in mesangial cells through a phosphodiesterase isoenzyme 4-dependent process. Am J Physiol Cell Physiol. 2005;289(4):C959–70.PubMedCrossRefGoogle Scholar
  42. 42.
    Xie L, Law BK, Chytil AM, Brown KA, Aakre ME, Moses HL. Activation of the Erk pathway is required for TGF-beta1-induced EMT in vitro. Neoplasia. 2004;6(5):603–10.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Yang M, Huang H, Li J, Li D, Wang H. Tyrosine phosphorylation of the LDL receptor-related protein (LRP) and activation of the ERK pathway are required for connective tissue growth factor to potentiate myofibroblast differentiation. FASEB J. 2004;18(15):1920–1.PubMedGoogle Scholar
  44. 44.
    Li JH, Wang W, Huang XR, Oldfield M, Schmidt AM, Cooper ME, Lan HY. Advanced glycation end products induce tubular epithelial-myofibroblast transition through the RAGE-ERK1/2 MAP kinase signaling pathway. Am J Pathol. 2004;164(4):1389–97.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Adhikary L, Chow F, Nikolic-Paterson DJ, Stambe C, Dowling J, Atkins RC, Tesch GH. Abnormal p38 mitogen-activated protein kinase signalling in human and experimental diabetic nephropathy. Diabetologia. 2004;47(7):1210–22.PubMedCrossRefGoogle Scholar
  46. 46.
    Toyoda M, Suzuki D, Honma M, Uehara G, Sakai T, Umezono T, Sakai H. High expression of PKC-MAPK pathway mRNAs correlates with glomerular lesions in human diabetic nephropathy. Kidney Int. 2004;66(3):1107–14.PubMedCrossRefGoogle Scholar
  47. 47.
    Sakai N, Wada T, Furuichi K, Iwata Y, Yoshimoto K, Kitagawa K, Kokubo S, Kobayashi M, Hara A, Yamahana J, Okumura T, Takasawa K, Takeda S, Yoshimura M, Kida H, Yokoyama H. Involvement of extracellular signal-regulated kinase and p38 in human diabetic nephropathy. Am J Kidney Dis. 2005;45(1):54–65.PubMedCrossRefGoogle Scholar
  48. 48.
    Masaki T, Stambe C, Hill PA, Dowling J, Atkins RC, Nikolic-Paterson DJ. Activation of the extracellular-signal regulated protein kinase pathway in human glomerulopathies. J Am Soc Nephrol. 2004;15(7):1835–43.PubMedCrossRefGoogle Scholar
  49. 49.
    Stambe C, Atkins RC, Hill PA, Nikolic-Paterson DJ. Activation and cellular localization of the p38 and JNK MAPK pathways in rat crescentic glomerulonephritis. Kidney Int. 2003;64(6):2121–32.PubMedCrossRefGoogle Scholar
  50. 50.
    Diaz Encarnacion MM, Warner GM, Gray CE, Cheng J, Keryakos HK, Nath KA, Grande JP. Signaling pathways modulated by fish oil in salt-sensitive hypertension. Am J Physiol Renal Physiol. 2008;294(6):F1323–35.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Imai G, Satoh T, Kumai T, Murao M, Tsuchida H, Shima Y, Ogimoto G, Fujino T, Kobayashi S, Kimura K. Hypertension accelerates diabetic nephropathy in Wistar fatty rats, a model of type 2 diabetes mellitus, via mitogen-activated protein kinase cascades and transforming growth factor-beta1. Hypertens Res. 2003;26(4):339–47.PubMedCrossRefGoogle Scholar
  52. 52.
    Pellieux C, Sauthier T, Aubert JF, Brunner HR, Pedrazzini T. Angiotensin II-induced cardiac hypertrophy is associated with different mitogen-activated protein kinase activation in normotensive and hypertensive mice. J Hypertens. 2000;18(9):1307–17.PubMedCrossRefGoogle Scholar
  53. 53.
    Jo SK, Cho WY, Sung SA, Kim HK, Won NH. MEK inhibitor, U0126, attenuates cisplatin-induced renal injury by decreasing inflammation and apoptosis. Kidney Int. 2005;67(2):458–66.PubMedCrossRefGoogle Scholar
  54. 54.
    Bokemeyer D, Panek D, Kitahara M, Trzaskos JM, Muller CE, Hockemeyer J, Kunter U, Boor P, Floege J, Kramer HJ, Ostendorf T. The map kinase ERK regulates renal activity of cyclin dependent kinase 2 in experimental glomerulonephritis. Nephrol Dial Transplant. 2007;18(11):2232–9.Google Scholar
  55. 55.
    Bokemeyer D, Panek D, Kramer HJ, Lindemann M, Kitahara M, Boor P, Kerjaschki D, Trzaskos JM, Floege J, Ostendorf T. In vivo identification of the mitogen-activated protein kinase cascade as a central pathogenic pathway in experimental mesangioproliferative glomerulonephritis. J Am Soc Nephrol. 2002;13(6):1473–80.PubMedCrossRefGoogle Scholar
  56. 56.
    Koshikawa M, Mukoyama M, Mori K, Suganami T, Sawai K, Yoshioka T, Nagae T, Yokoi H, Kawachi H, Shimizu F, Sugawara A, Nakao K. Role of p38 mitogen-activated protein kinase activation in podocyte injury and proteinuria in experimental nephrotic syndrome. J Am Soc Nephrol. 2005;16(9):2690–701.PubMedCrossRefGoogle Scholar
  57. 57.
    Wada T, Furuichi K, Sakai N, Hisada Y, Kobayashi K, Mukaida N, Tomosugi N, Matsushima K, Yokoyama H. Involvement of p38 mitogen-activated protein kinase followed by chemokine expression in crescentic glomerulonephritis. Am J Kidney Dis. 2001;38(6):1169–77.PubMedCrossRefGoogle Scholar
  58. 58.
    Kotliar C, Juncos L, Inserra F, de Cavanagh EM, Chuluyan E, Aquino JB, Hita A, Navari C, Sanchez R. Local and systemic cellular immunity in early renal artery atherosclerosis. Clin J Am Soc Nephrol. 2012;7(2):224–30.PubMedCrossRefGoogle Scholar
  59. 59.
    Wang Y, Harris DC. Macrophages in renal disease. J Am Soc Nephrol. 2011;22(1):21–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Pauletto P, Rattazzi M. Inflammation and hypertension: the search for a link. Nephrol Dial Transplant. 2006;21(4):850–3.PubMedCrossRefGoogle Scholar
  61. 61.
    Liu J, Yang F, Yang X-P, Jankowski M, Pagano PJ. NAD(P)H oxidase mediates angiotensin II-induced vascular macrophage infiltration and medial hypertrophy. Arterioscler Thromb Vasc Biol. 2003;23(5):776–82.PubMedCrossRefGoogle Scholar
  62. 62.
    Luft FC. Workshop: mechanisms and cardiovascular damage in hypertension. Hypertension. 2001;37(2 Part 2):594–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Bjorkbacka H. Multiple roles of Toll-like receptor signaling in atherosclerosis. Curr Opin Lipidol. 2006;17(5):527–33.PubMedCrossRefGoogle Scholar
  64. 64.
    Chade AR, Rodriguez-Porcel M, Herrmann J, Krier JD, Zhu X, Lerman A, Lerman LO. Beneficial effects of antioxidant vitamins on the stenotic kidney. Hypertension. 2003;42:605–12.PubMedCrossRefGoogle Scholar
  65. 65.
    Chade AR, Rodriguez-Porcel M, Herrmann J, Zhu X, Grande JP, Napoli C, Lerman A, Lerman LO. Antioxidant intervention blunts renal injury in experimental renovascular disease. J Am Soc Nephrol. 2004;15(4):958–66.PubMedCrossRefGoogle Scholar
  66. 66.
    Chade AR, Krier JD, Rodriguez-Porcel M, Breen JF, McKusick MA, Lerman A, Lerman LO. Comparison of acute and chronic antioxidant interventions in experimental renovascular disease. Am J Physiol Renal Physiol. 2004;286(6):F1079–86.PubMedCrossRefGoogle Scholar
  67. 67.
    Garcia GE. ANG II receptor antagonists as modulators of macrophages polarization. Am J Physiol Renal Physiol. 2010;298(4):F868–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, Goronzy J, Weyand C, Harrison DG. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med. 2007;204(10):2449–60.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Carlos CP, Mendes GE, Miquelin AR, Luz MA, da Silva CG, van Rooijen N, Coimbra TM, Burdmann EA. Macrophage depletion attenuates chronic cyclosporine A nephrotoxicity. Transplantation. 2010;89(11):1362–70.PubMedCrossRefGoogle Scholar
  70. 70.
    Prabhakar NR. Sensory plasticity of the carotid body: role of reactive oxygen species and physiological significance. Respir Physiol Neurobiol. 2011;178(3):375–80.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Kitamoto K, Machida Y, Uchida J, Izumi Y, Shiota M, Nakao T, Iwao H, Yukimura T, Nakatani T, Miura K. Effects of liposome clodronate on renal leukocyte populations and renal fibrosis in murine obstructive nephropathy. J Pharmacol Sci. 2009;111(3):285–92.PubMedCrossRefGoogle Scholar
  72. 72.
    Tsuchiya K, Yoshimoto T, Hirono Y, Tateno T, Sugiyama T, Hirata Y. Angiotensin II induces monocyte chemoattractant protein-1 expression via a nuclear factor-kappaB-dependent pathway in rat preadipocytes. Am J Physiol Endocrinol Metabol. 2006;291(4):E771–8.CrossRefGoogle Scholar
  73. 73.
    Zhu XY, Chade AR, Krier JD, Daghini E, Lavi R, Guglielmotti A, Lerman A, Lerman LO. The chemokine monocyte chemoattractant protein-1 contributes to renal dysfunction in swine renovascular hypertension. J Hypertens. 2009;27(10):2063–73.PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Ialenti A, Grassia G, Gordon P, Maddaluno M, Di Lauro MV, Baker AH, Guglielmotti A, Colombo A, Biondi G, Kennedy S, Maffia P. Inhibition of in-stent stenosis by oral administration of bindarit in porcine coronary arteries. Arterioscler Thromb Vasc Biol. 2011;31(11):2448–54.PubMedCrossRefGoogle Scholar
  75. 75.
    Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122(3):787–95.PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25(12):677–86.PubMedCrossRefGoogle Scholar
  77. 77.
    Ricardo SD, van Goor H, Eddy AA. Macrophage diversity in renal injury and repair. J Clin Invest. 2008;118(11):3522–30.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Aki K, Shimizu A, Masuda Y, Kuwahara N, Arai T, Ishikawa A, Fujita E, Mii A, Natori Y, Fukunaga Y, Fukuda Y. ANG II receptor blockade enhances anti-inflammatory macrophages in anti-glomerular basement membrane glomerulonephritis. Am J Physiol Renal Physiol. 2010;298(4):F870–82.PubMedCrossRefGoogle Scholar
  79. 79.
    Ma L-J, Corsa BA, Zhou J, Yang H, Li H, Tang Y-W, Babaev VR, Major AS, Linton MF, Fazio S, Hunley TE, Kon V, Fogo AB. Angiotensin type 1 receptor modulates macrophage polarization and renal injury in obesity. Am J Physiol Renal Physiol. 2011;300(5):F1203–13.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Nishida M, Okumura Y, Fujimoto S, Shiraishi I, Itoi T, Hamaoka K. Adoptive transfer of macrophages ameliorates renal fibrosis in mice. Biochem Biophys Res Commun. 2005;332(1):11–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Wang Y, Wang YP, Zheng G, Lee VW, Ouyang L, Chang DH, Mahajan D, Coombs J, Wang YM, Alexander SI, Harris DC. Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease. Kidney Int. 2007;72(3):290–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Cao Q, Wang Y, Zheng D, Sun Y, Wang Y, Lee VWS, Zheng G, Tan TK, Ince J, Alexander SI, Harris DCH. IL-10/TGF-β–modified macrophages induce regulatory T cells and protect against adriamycin nephrosis. J Am Soc Nephrol. 2010;21(6):933–42; 1 June 2010;10(10):2208–14.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Textor SC, Lerman L. Renovascular hypertension and ischemic nephropathy. Am J Hypertens. 2010;23(11):1159–69.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Mayo Graduate SchoolMayo ClinicRochesterUSA
  2. 2.Department of Laboratory Medicine and PathologyMayo ClinicRochesterUSA

Personalised recommendations