Aortoiliofemoral Assessment: MRA



Transcatheter aortic valve replacement (TAVR) is an undergoing evaluation for the treatment of inoperable or high-risk severe aortic stenosis (AS) patients. Patients with symptomatic, severe AS are at high risk for conventional surgical aortic valve replacement procedures. One of the alternate ways of managing these patients is through TAVR. Several studies on post TAVR patients with a follow-up interval up to 2 years showed significant clinical benefit, improvements in exercise capacity and in quality of life. Proper patient selection is key to optimize successful clinical outcomes. A number of imaging modalities are available for patient screening. One of them is magnetic resonance imaging (MRI). MRI provides morphological information, functional status, pre-operative planning and thus plays a role in selection of patients. It is ideally suited for patients with renal insufficiency as evaluation could be done without contrast administration. MRI may prove to be a useful alternative for TAVR evaluation and is particularly beneficial to patients with underlying chronic kidney disease.


MRI MRA TAVR Aortoiliofemoral imaging Aortic stenosis 



3 dimension


Aortic regurgitation


Aortic stenosis


Contrast enhanced


Cross section


Digital subtraction angiography


European system for cardiac operative risk evaluation


Fast imaging with steady-state precession




Glomerular filtration rate


Half-fourier acquisition single-shot turbo spin echo


Horizontal long axis


Hypertrophic obstructive cardiomyopathy


Interventricular septum


Left common carotid artery


Left ventricle


Left ventricle ejection fraction


Left ventricle outflow tract


Multidetector computerized tomography


Maximum intensity projection


Multiplanar reconstruction


Magnetic resonance angiography


Magnetic resonance imaging


Nephrogenic systemic fibrosis


Phase contrast


Region of interest


Short axis


Signal-to-noise ratio


Sinus of Valsalva


Steady-state free precession


Sinotubular junction


Society of Thoracic Surgeons


Transcatheter aortic valve replacement


Vertical long axis


Volume-rendered technique




  1. 1.
    Iung B, Cachier A, Baron G, Messika-Zeitoun D, Delahaye F, Tornos P, et al. Decision-making in elderly patients with severe aortic stenosis: why are so many denied surgery? Eur Heart J. 2005;26(24):2714–20. Epub 2005/09/06.PubMedCrossRefGoogle Scholar
  2. 2.
    Chitsaz S, Jaussaud N, Chau E, Yan KS, Azadani AN, Ratcliffe MB, et al. Operative risks and survival in veterans with severe aortic stenosis: surgery versus medical therapy. Ann Thorac Surg. 2011;92(3):866–72. Epub 2011/08/30.PubMedCrossRefGoogle Scholar
  3. 3.
    Bouma BJ, van Den Brink RB, van Der Meulen JH, Verheul HA, Cheriex EC, Hamer HP, et al. To operate or not on elderly patients with aortic stenosis: the decision and its consequences. Heart. 1999;82(2):143–8. Epub 1999/07/20.PubMedGoogle Scholar
  4. 4.
    Pai RG, Kapoor N, Bansal RC, Varadarajan P. Malignant natural history of asymptomatic severe aortic stenosis: benefit of aortic valve replacement. Ann Thorac Surg. 2006;82(6):2116–22. Epub 2006/11/28.PubMedCrossRefGoogle Scholar
  5. 5.
    Varadarajan P, Kapoor N, Bansal RC, Pai RG. Survival in elderly patients with severe aortic stenosis is dramatically improved by aortic valve replacement: Results from a cohort of 277 patients aged > or =80 years. Eur J Cardiothorac Surg. 2006;30(5):722–7. Epub 2006/09/05.PubMedCrossRefGoogle Scholar
  6. 6.
    Kojodjojo P, Gohil N, Barker D, Youssefi P, Salukhe TV, Choong A, et al. Outcomes of elderly patients aged 80 and over with symptomatic, severe aortic stenosis: impact of patient's choice of refusing aortic valve replacement on survival. QJM. 2008;101(7):567–73. Epub 2008/04/30.PubMedCrossRefGoogle Scholar
  7. 7.
    Gotzmann M, Hehen T, Germing A, Lindstaedt M, Yazar A, Laczkovics A, et al. Short-term effects of transcatheter aortic valve implantation on neurohormonal activation, quality of life and 6-minute walk test in severe and symptomatic aortic stenosis. Heart. 2010;96(14):1102–6. Epub 2009/11/04.PubMedCrossRefGoogle Scholar
  8. 8.
    Ussia GP, Barbanti M, Cammalleri V, Scarabelli M, Mule M, Aruta P, et al. Quality-of-life in elderly patients one year after transcatheter aortic valve implantation for severe aortic stenosis. EuroIntervention. 2011;7(5):573–9. Epub 2011/09/21.PubMedCrossRefGoogle Scholar
  9. 9.
    Goncalves A, Marcos-Alberca P, Almeria C, Feltes G, Hernandez-Antolin RA, Rodriguez E, et al. Quality of life improvement at midterm follow-up after transcatheter aortic valve implantation. Int J Cardiol. 2013;162(2):117–22. Epub 2011/06/04.PubMedCrossRefGoogle Scholar
  10. 10.
    Bagur R, Rodes-Cabau J, Dumont E, Larochelliere RD, Doyle D, Bertrand OF, et al. Exercise capacity in patients with severe symptomatic aortic stenosis before and six months after transcatheter aortic valve implantation. Am J Cardiol. 2011;108(2):258–64. Epub 2011/05/07.PubMedCrossRefGoogle Scholar
  11. 11.
    Buellesfeld L, Gerckens U, Schuler G, Bonan R, Kovac J, Serruys PW, et al. 2-year follow-up of patients undergoing transcatheter aortic valve implantation using a self-expanding valve prosthesis. J Am Coll Cardiol. 2011;57(16):1650–7. Epub 2011/04/16.PubMedCrossRefGoogle Scholar
  12. 12.
    Lange R, Bleiziffer S, Mazzitelli D, Elhmidi Y, Opitz A, Krane M, et al. Improvements in transcatheter aortic valve implantation outcomes in lower surgical risk patients: a glimpse into the future. J Am Coll Cardiol. 2012;59(3):280–7. Epub 2011/12/27.PubMedCrossRefGoogle Scholar
  13. 13.
    Cribier A, Eltchaninoff H, Bash A, Borenstein N, Tron C, Bauer F, et al. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation. 2002;106(24):3006–8. Epub 2002/12/11.PubMedCrossRefGoogle Scholar
  14. 14.
    Prince MR, Meaney JF. Expanding role of MR angiography in clinical practice. Eur Radiol. 2006;16 Suppl 2:B3–8. Epub 2006/06/28.PubMedGoogle Scholar
  15. 15.
    Willinek WA, von Falkenhausen M, Born M, Gieseke J, Holler T, Klockgether T, et al. Noninvasive detection of steno-occlusive disease of the supra-aortic arteries with three-dimensional contrast-enhanced magnetic resonance angiography: a prospective, intra-individual comparative analysis with digital subtraction angiography. Stroke. 2005;36(1):38–43. Epub 2004/12/01.PubMedCrossRefGoogle Scholar
  16. 16.
    Deutschmann HA, Schoellnast H, Portugaller HR, Preidler KW, Reittner P, Tillich M, et al. Routine use of three-dimensional contrast-enhanced moving-table MR angiography in patients with peripheral arterial occlusive disease: comparison with selective digital subtraction angiography. Cardiovasc Intervent Radiol. 2006;29(5):762–70. Epub 2006/04/21.PubMedCrossRefGoogle Scholar
  17. 17.
    Berg F, Bangard C, Bovenschulte H, Hellmich M, Nijenhuis M, Lackner K, et al. Feasibility of peripheral contrast-enhanced magnetic resonance angiography at 3.0 Tesla with a hybrid technique: comparison with digital subtraction angiography. Invest Radiol. 2008;43(9):642–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Bui BT, Miller S, Mildenberger P, Sam 2nd A, Sheng R. Comparison of contrast-enhanced MR angiography to intraarterial digital subtraction angiography for evaluation of peripheral arterial occlusive disease: results of a phase III multicenter trial. J Magn Reson Imaging. 2010;31(6):1402–10. Epub 2010/06/01.PubMedCrossRefGoogle Scholar
  19. 19.
    Lin J, Li D, Yan F. High-resolution 3D contrast-enhanced MRA with parallel imaging techniques before endovascular interventional treatment of arterial stenosis. Vasc Med. 2009;14(4):305–11. Epub 2009/10/08.PubMedCrossRefGoogle Scholar
  20. 20.
    Prince MR, Yucel EK, Kaufman JA, Harrison DC, Geller SC. Dynamic gadolinium-enhanced three-dimensional abdominal MR arteriography. J Magn Reson Imaging. 1993;3(6):877–81. Epub 1993/11/01.PubMedCrossRefGoogle Scholar
  21. 21.
    Prince MR, Arnoldus C, Frisoli JK. Nephrotoxicity of high-dose gadolinium compared with iodinated contrast. J Magn Reson Imaging. 1996;6(1):162–6. Epub 1996/01/01.PubMedCrossRefGoogle Scholar
  22. 22.
    Hoffmann U, Fischereder M, Reil A, Fischer M, Link J, Kramer BK. Renal effects of gadopentetate dimeglumine in patients with normal and impaired renal function. Eur J Med Res. 2005;10(4):149–54. Epub 2005/06/11.PubMedGoogle Scholar
  23. 23.
    Kane GC, Stanson AW, Kalnicka D, Rosenthal DW, Lee CU, Textor SC, et al. Comparison between gadolinium and iodine contrast for percutaneous intervention in atherosclerotic renal artery stenosis: clinical outcomes. Nephrol Dial Transplant. 2008;23(4):1233–40. Epub 2008/02/08.PubMedCrossRefGoogle Scholar
  24. 24.
    Grobner T. Gadolinium–a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant. 2006;21(4):1104–8. Epub 2006/01/25.PubMedCrossRefGoogle Scholar
  25. 25.
    Marckmann P, Skov L, Rossen K, Dupont A, Damholt MB, Heaf JG, et al. Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol. 2006;17(9):2359–62. Epub 2006/08/04.PubMedCrossRefGoogle Scholar
  26. 26.
    Mendoza FA, Artlett CM, Sandorfi N, Latinis K, Piera-Velazquez S, Jimenez SA. Description of 12 cases of nephrogenic fibrosing dermopathy and review of the literature. Semin Arthritis Rheum. 2006;35(4):238–49. Epub 2006/02/08.PubMedCrossRefGoogle Scholar
  27. 27.
    Wiginton CD, Kelly B, Oto A, Jesse M, Aristimuno P, Ernst R, et al. Gadolinium-based contrast exposure, nephrogenic systemic fibrosis, and gadolinium detection in tissue. AJR Am J Roentgenol. 2008;190(4):1060–8. Epub 2008/03/22.PubMedCrossRefGoogle Scholar
  28. 28.
    Perez-Rodriguez J, Lai S, Ehst BD, Fine DM, Bluemke DA. Nephrogenic systemic fibrosis: incidence, associations, and effect of risk factor assessment – report of 33 cases. Radiology. 2009;250(2):371–7. Epub 2009/02/04.PubMedCrossRefGoogle Scholar
  29. 29.
    Bryant 2nd BJ, Im K, Broome DR. Evaluation of the incidence of nephrogenic systemic fibrosis in patients with moderate renal insufficiency administered gadobenate dimeglumine for MRI. Clin Radiol. 2009;64(7):706–13. Epub 2009/06/13.PubMedCrossRefGoogle Scholar
  30. 30.
    Hoppe H, Spagnuolo S, Froehlich JM, Nievergelt H, Dinkel HP, Gretener S, et al. Retrospective analysis of patients for development of nephrogenic systemic fibrosis following conventional angiography using gadolinium-based contrast agents. Eur Radiol. 2010;20(3):595–603. Epub 2009/09/18.PubMedCrossRefGoogle Scholar
  31. 31.
    Chrysochou C, Buckley DL, Dark P, Cowie A, Kalra PA. Gadolinium-enhanced magnetic resonance imaging for renovascular disease and nephrogenic systemic fibrosis: critical review of the literature and UK experience. J Magn Reson Imaging. 2009;29(4):887–94. Epub 2009/03/24.PubMedCrossRefGoogle Scholar
  32. 32.
    Altun E, Martin DR, Wertman R, Lugo-Somolinos A, Fuller 3rd ER, Semelka RC. Nephrogenic systemic fibrosis: change in incidence following a switch in gadolinium agents and adoption of a gadolinium policy–report from two U.S. universities. Radiology. 2009;253(3):689–96.PubMedCrossRefGoogle Scholar
  33. 33.
    Martin DR, Krishnamoorthy SK, Kalb B, Salman KN, Sharma P, Carew JD, et al. Decreased incidence of NSF in patients on dialysis after changing gadolinium contrast-enhanced MRI protocols. J Magn Reson Imaging. 2010;31(2):440–6. Epub 2010/01/26.PubMedCrossRefGoogle Scholar
  34. 34.
    Wang Y, Alkasab TK, Narin O, Nazarian RM, Kaewlai R, Kay J, et al. Incidence of nephrogenic systemic fibrosis after adoption of restrictive gadolinium-based contrast agent guidelines. Radiology. 2011;260(1):105–11. Epub 2011/05/19.PubMedCrossRefGoogle Scholar
  35. 35.
    Blankholm AD, Ringgaard S. Non-contrast-enhanced magnetic resonance angiography: techniques and applications. Expert Rev Cardiovasc Ther. 2012;10(1):75–88. Epub 2011/12/14.PubMedCrossRefGoogle Scholar
  36. 36.
    Miyazaki M, Akahane M. Non-contrast enhanced MR angiography: established techniques. J Magn Reson Imaging. 2012;35(1):1–19. Epub 2011/12/17.PubMedCrossRefGoogle Scholar
  37. 37.
    Miyazaki M, Sugiura S, Tateishi F, Wada H, Kassai Y, Abe H. Non-contrast-enhanced MR angiography using 3D ECG-synchronized half-Fourier fast spin echo. J Magn Reson Imaging. 2000;12(5):776–83. Epub 2000/10/26.PubMedCrossRefGoogle Scholar
  38. 38.
    Korosec FR, Frayne R, Grist TM, Mistretta CA. Time-resolved contrast-enhanced 3D MR angiography. Magn Reson Med. 1996;36(3):345–51. Epub 1996/09/01.PubMedCrossRefGoogle Scholar
  39. 39.
    Krishnam MS, Tomasian A, Lohan DG, Tran L, Finn JP, Ruehm SG. Low-dose, time-resolved, contrast-enhanced 3D MR angiography in cardiac and vascular diseases: correlation to high spatial resolution 3D contrast-enhanced MRA. Clin Radiol. 2008;63(7):744–55. Epub 2008/06/17.PubMedCrossRefGoogle Scholar
  40. 40.
    John NW, McCloy RF. Navigating and visualizing three-dimensional data sets. Br J Radiol. 2004;77 Spec No 2:S108–13. Epub 2005/01/29.PubMedCrossRefGoogle Scholar
  41. 41.
    Pavone P, Luccichenti G, Cademartiri F. From maximum intensity projection to volume rendering. Semin Ultrasound CT MR. 2001;22(5):413–9. Epub 2001/10/23.PubMedCrossRefGoogle Scholar
  42. 42.
    Luccichenti G, Cademartiri F, Pezzella FR, Runza G, Belgrano M, Midiri M, et al. 3D reconstruction techniques made easy: know-how and pictures. Eur Radiol. 2005;15(10):2146–56. Epub 2005/04/06.PubMedCrossRefGoogle Scholar
  43. 43.
    Anderson RH. Clinical anatomy of the aortic root. Heart. 2000;84(6):670–3. Epub 2000/11/18.PubMedCrossRefGoogle Scholar
  44. 44.
    Piazza N, de Jaegere P, Schultz C, Becker AE, Serruys PW, Anderson RH. Anatomy of the aortic valvar complex and its implications for transcatheter implantation of the aortic valve. Circ Cardiovasc Interv. 2008;1(1):74–81. Epub 2008/08/01.PubMedCrossRefGoogle Scholar
  45. 45.
    Tarantini G, Gasparetto V, Napodano M, Fraccaro C, Gerosa G, Isabella G. Valvular leak after transcatheter aortic valve implantation: a clinician update on epidemiology, pathophysiology and clinical implications. Am J Cardiovasc Dis. 2011;1(3):312–20. Epub 2012/01/19.PubMedGoogle Scholar
  46. 46.
    Yan TD, Cao C, Martens-Nielsen J, Padang R, Ng M, Vallely MP, et al. Transcatheter aortic valve implantation for high-risk patients with severe aortic stenosis: A systematic review. J Thorac Cardiovasc Surg. 2010;139(6):1519–28. Epub 2009/10/23.PubMedCrossRefGoogle Scholar
  47. 47.
    Masson JB, Kovac J, Schuler G, Ye J, Cheung A, Kapadia S, et al. Transcatheter aortic valve implantation: review of the nature, management, and avoidance of procedural complications. JACC Cardiovasc Interv. 2009;2(9):811–20. Epub 2009/09/26.PubMedCrossRefGoogle Scholar
  48. 48.
    Abdel-Wahab M, Zahn R, Horack M, Gerckens U, Schuler G, Sievert H, et al. Aortic regurgitation after transcatheter aortic valve implantation: incidence and early outcome. Results from the German transcatheter aortic valve interventions registry. Heart. 2011;97(11):899–906. Epub 2011/03/15.PubMedCrossRefGoogle Scholar
  49. 49.
    Takagi K, Latib A, Al-Lamee R, Mussardo M, Montorfano M, Maisano F, et al. Predictors of moderate-to-severe paravalvular aortic regurgitation immediately after CoreValve implantation and the impact of postdilatation. Catheter Cardiovasc Interv. 2011;78(3):432–43. Epub 2011/07/28.PubMedGoogle Scholar
  50. 50.
    Tamburino C, Capodanno D, Ramondo A, Petronio AS, Ettori F, Santoro G, et al. Incidence and predictors of early and late mortality after transcatheter aortic valve implantation in 663 patients with severe aortic stenosis. Circulation. 2011;123(3):299–308. Epub 2011/01/12.PubMedCrossRefGoogle Scholar
  51. 51.
    Kodali SK, Williams MR, Smith CR, Svensson LG, Webb JG, Makkar RR, et al. Two-year outcomes after transcatheter or surgical aortic-valve replacement. N Engl J Med. 2012;366(18):1686–95. Epub 2012/03/27.PubMedCrossRefGoogle Scholar
  52. 52.
    O'Brien B, Schoenhagen P, Kapadia SR, Svensson LG, Rodriguez L, Griffin BP, et al. Integration of 3D imaging data in the assessment of aortic stenosis: impact on classification of disease severity. Circ Cardiovasc Imaging. 2011;4(5):566–73. Epub 2011/07/09.PubMedCrossRefGoogle Scholar
  53. 53.
    Ng AC, Delgado V, van der Kley F, Shanks M, van de Veire NR, Bertini M, et al. Comparison of aortic root dimensions and geometries before and after transcatheter aortic valve implantation by 2- and 3-dimensional transesophageal echocardiography and multislice computed tomography. Circ Cardiovasc Imaging. 2010;3(1):94–102. Epub 2009/11/19.PubMedCrossRefGoogle Scholar
  54. 54.
    Crawford MH, Roldan CA. Prevalence of aortic root dilatation and small aortic roots in valvular aortic stenosis. Am J Cardiol. 2001;87(11):1311–3. Epub 2001/05/30.PubMedCrossRefGoogle Scholar
  55. 55.
    Bahlmann E, Nienaber CA, Cramariuc D, Gohlke-Baerwolf C, Ray S, Devereux RB, et al. Aortic root geometry in aortic stenosis patients (a SEAS substudy). Eur J Echocardiogr. 2011;12(8):585–90. Epub 2011/04/22.PubMedCrossRefGoogle Scholar
  56. 56.
    Matalanis G. Valve sparing aortic root repairs – an anatomical approach. Heart Lung Circ. 2004;13 Suppl 3:S13–8. Epub 2005/12/15.PubMedCrossRefGoogle Scholar
  57. 57.
    Kwon DH, Smedira NG, Popovic ZB, Lytle BW, Setser RM, Thamilarasan M, et al. Steep left ventricle to aortic root angle and hypertrophic obstructive cardiomyopathy: study of a novel association using three-dimensional multimodality imaging. Heart. 2009;95(21):1784–91. Epub 2009/06/25.PubMedCrossRefGoogle Scholar
  58. 58.
    Sherif MA, Abdel-Wahab M, Stocker B, Geist V, Richardt D, Tolg R, et al. Anatomic and procedural predictors of paravalvular aortic regurgitation after implantation of the Medtronic CoreValve bioprosthesis. J Am Coll Cardiol. 2010;56(20):1623–9. Epub 2010/11/06.PubMedCrossRefGoogle Scholar
  59. 59.
    del Valle-Fernandez R, Jelnin V, Panagopoulos G, Dudiy Y, Schneider L, de Jaegere PT, et al. A method for standardized computed tomography angiography-based measurement of aortic valvar structures. Eur Heart J. 2010;31(17):2170–8. Epub 2010/05/27.PubMedCrossRefGoogle Scholar
  60. 60.
    Hayashida K, Lefevre T, Chevalier B, Hovasse T, Romano M, Garot P, et al. Transfemoral aortic valve implantation new criteria to predict vascular complications. JACC Cardiovasc Interv. 2011;4(8):851–8. Epub 2011/08/20.PubMedCrossRefGoogle Scholar
  61. 61.
    Eggebrecht H, Schmermund A, Voigtlander T, Kahlert P, Erbel R, Mehta RH. Risk of stroke after transcatheter aortic valve implantation (TAVI): a meta-analysis of 10,037 published patients. EuroIntervention. 2012;8(1):129–38. Epub 2012/03/07.PubMedCrossRefGoogle Scholar
  62. 62.
    Hynes BG, Rodes-Cabau J. Transcatheter aortic valve implantation and cerebrovascular events: the current state of the art. Ann N Y Acad Sci. 2012;1254(1):151–63. Epub 2012/05/03.PubMedCrossRefGoogle Scholar
  63. 63.
    Grube E, Schuler G, Buellesfeld L, Gerckens U, Linke A, Wenaweser P, et al. Percutaneous aortic valve replacement for severe aortic stenosis in high-risk patients using the second- and current third-generation self-expanding CoreValve prosthesis: device success and 30-day clinical outcome. J Am Coll Cardiol. 2007;50(1):69–76. Epub 2007/07/03.PubMedCrossRefGoogle Scholar
  64. 64.
    Webb JG, Altwegg L, Boone RH, Cheung A, Ye J, Lichtenstein S, et al. Transcatheter aortic valve implantation: impact on clinical and valve-related outcomes. Circulation. 2009;119(23):3009–16. Epub 2009/06/03.PubMedCrossRefGoogle Scholar
  65. 65.
    Demertzis S, Hurni S, Stalder M, Gahl B, Herrmann G, Van den Berg J. Aortic arch morphometry in living humans. J Anat. 2010;217(5):588–96. Epub 2010/10/29.PubMedCrossRefGoogle Scholar
  66. 66.
    Madhwal S, Rajagopal V, Bhatt DL, Bajzer CT, Whitlow P, Kapadia SR. Predictors of difficult carotid stenting as determined by aortic arch angiography. J Invasive Cardiol. 2008;20(5):200–4. Epub 2008/05/08.PubMedGoogle Scholar
  67. 67.
    Kurra V, Schoenhagen P, Roselli EE, Kapadia SR, Tuzcu EM, Greenberg R, et al. Prevalence of significant peripheral artery disease in patients evaluated for percutaneous aortic valve insertion: preprocedural assessment with multidetector computed tomography. J Thorac Cardiovasc Surg. 2009;137(5):1258–64. Epub 2009/04/22.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Department of Radiology and Imaging Sciences, Division of Cardiothoracic ImagingEmory University School of MedicineAtlantaUSA
  2. 2.Department of Medicine, Radiology and Imaging Sciences, Division of CardiologyEmory University School of MedicineAtlantaUSA
  3. 3.Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations