Optimization

  • Louis G. Birta
  • Gilbert Arbez
Chapter
Part of the Simulation Foundations, Methods and Applications book series (SFMA)

Abstract

The goal of a simulation project is often formulated in terms of an optimization task, and this chapter explores this topic within the CTDS context. A key facet of this task is the identification of a criterion function that measures some aspect of the SUI’s behaviour that is related to the project goal(s). The criterion function is dependent on some set of parameters embedded within the SUI. The optimization task corresponds to finding a ‘best value’ for this set of parameters as indicated by an extreme value (either maximum or minimum) for the selected criterion function. This problem of extremizing the value of a criterion function by locating a best value for a set of parameters has been widely studied in the optimization literature. In the modelling and simulation context, the problem is distinctive inasmuch as the evaluation of the criterion function is linked to a simulation model. Several well-established numerical procedures that can be directly applied when the simulation model falls in the CTDS category are outlined in this chapter. Included here are both a gradient-independent method (the Nelder–Mead Simplex method) and a gradient-dependent method (the conjugate gradient method). Associated issues of gradient evaluation and the linear search problem are discussed.

Keywords

Sugar 

References

  1. 1.
    Al-Baali M (1985) Descent property and global convergence of the Fletcher-Reeves method with inexact line search. IMA J Numer Anal 5:121–124MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Beale EML (1972) A derivation of conjugate gradients. In: Lottsma FA (ed) Numerical methods for non-linear optimization. Academic, London, pp 39–43Google Scholar
  3. 3.
    Bertsekas DP (1996) Constrained optimization and Lagrange multiplier methods. Athena Scientific, NashuaGoogle Scholar
  4. 4.
    Bhatnager S, Kowshik HJ (2005) A discrete parameter stochastic approximation algorithm for simulation optimization. Simulation 81(11):757–772CrossRefGoogle Scholar
  5. 5.
    Bonnans JF, Gilbert JC, Lemaréchal C, Sagastizabal CA (2003) Numerical optimization: theoretical and practical aspects. Springer, BerlinCrossRefGoogle Scholar
  6. 6.
    Buchholz P (2009) Optimization of stochastic discrete event models and algorithms for optimization logistics, Dagstuhl seminar proceedings 09261, 2009, Dagstuhl, GermanyGoogle Scholar
  7. 7.
    Cormen TH, Leisserson CE, Rivest RL (1990) Introduction to algorithms. MIT Press, Cambridge, MAMATHGoogle Scholar
  8. 8.
    Deroussi L, Gourgand M, Tchernev N (2006) 2006 international conference on service systems and service management, October, pp 495–500, Troyes, FranceGoogle Scholar
  9. 9.
    Fletcher R (1987) Practical methods of optimization, 2nd edn. Wiley, New YorkMATHGoogle Scholar
  10. 10.
    Fletcher R, Reeves CM (1964) Function minimization by conjugate gradients. Comput J 7:149–154MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Fu MC (2002) Optimization for simulation: theory versus practice. INFORMS J Comput 14:192–215MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Gilbert J, Nocedal J (1992) Global convergence properties of conjugate gradient methods for optimization. SIAM J Optim 2:21–42MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Heath MT (2000) Scientific computing, an introductory survey, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  14. 14.
    Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J Optim 9:112–147MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Law AM, Kelton DW (2000) Simulation modeling and analysis, 3rd edn. McGraw Hill, New YorkGoogle Scholar
  16. 16.
    Lewis FL, Syrmos VL (1995) Optimal control, 2nd edn. Wiley, New YorkGoogle Scholar
  17. 17.
    Nelder J, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313CrossRefMATHGoogle Scholar
  18. 18.
    Nocedal J, Wright SJ (1999) Numerical optimization. Springer, New YorkCrossRefMATHGoogle Scholar
  19. 19.
    Olafason S, Kim J (2002) Simulation optimization. In: Proceeding of the 2002 winter simulation conference, pp 79–84, San Diego, CAGoogle Scholar
  20. 20.
    Oretega JM, Rheinboldt WC (1970) Iterative solution of nonlinear equations in several variables. Academic, New YorkGoogle Scholar
  21. 21.
    Pedregal P (2004) Introduction to optimization. Springer, New YorkMATHGoogle Scholar
  22. 22.
    Pichitlamken J, Nelson BL (2003) A combined procedure for optimizing via simulation. ACM Trans Model Simul 13:155–179CrossRefGoogle Scholar
  23. 23.
    Pintér JD (2013) LGO – a model development and solver system for global-local nonlinear optimization, User’s guide, 2nd edn. Published and distributed by Pintér Consulting Services, Inc., Halifax. www.pinterconsulting.com (First edition: June 1995)
  24. 24.
    Polack E, Ribière G (1969) Note sur la Convergence de Méthodes de Directions Conjuguées. Revue Française d’Informatique et de Recherche Opérationnelle 16:35–43Google Scholar
  25. 25.
    Powell MJD (1978) Restart procedures for the conjugate gradient method. Math Prog 12:241–254CrossRefGoogle Scholar
  26. 26.
    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1999) Numerical recipes in C, The art of scientific computing, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  27. 27.
    Rubinstein R, Shapiro A (1993) Discrete event systems: sensitivity analysis and stochastic optimization by the score function method. Wiley, New YorkMATHGoogle Scholar
  28. 28.
    Rykov A (1983) Simplex algorithms for unconstrained optimization. Probl Control Inf Theory 12:195–208MathSciNetMATHGoogle Scholar
  29. 29.
    Seierstad A, Sydstaeter K (1987) Optimal control theory with economic applications. North Holland, AmsterdamMATHGoogle Scholar
  30. 30.
    Sorenson HW (1969) Comparison of some conjugate directions procedures for function minimization. J Franklin Inst 288:421–441MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Wolfe P (1969) Convergence conditions for ascent methods. SIAM Rev 11:226–235MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Zabinsky ZB (2003) Stochastic adaptive search for global optimization. Kluwer Academic Publishers, DordrechtCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Louis G. Birta
    • 1
  • Gilbert Arbez
    • 1
  1. 1.School of Electrical Engineering and Computer ScienceUniversity of OttawaOttawaCanada

Personalised recommendations