Skip to main content

The Relationship of Weight-Bearing Physical Activity and Dietary Calcium Intake with Bone Mass Accrual in the Bone Mineral Density in Childhood Study Cohort

  • Chapter
  • First Online:
Nutritional Influences on Bone Health

Abstract

Background: Although it is widely accepted that dietary calcium intake (CaI) and weight-bearing physical activity (WBA) increase bone mass accrual during growth, few prospective studies have followed children from early childhood to sexual maturity to evaluate this relationship.

Aims: To describe the relationship between CaI and WBA and total body bone mineral content (TBBMC) accrual in a large, multiracial cohort of children followed prospectively.

Methods: Five US centers recruited 2014 healthy children (ages 5–19 years) and measured them annually for up to 7 years. Subjects with at least two annual visits are included in this analysis (944 boys, 973 girls). Assessments included TBBMC, Tanner stage, WBA, and CaI. Multiple regression was used to model annual increases in TBBMC, controlled for annualized overall height growth, Tanner stages, and baseline TBBMC. The effect of adding WBA and CaI to the model was evaluated for four subgroups: nonblack boys and girls and black boys and girls.

Results: WBA had a positive association with adjusted annual increases in TBBMC in all subgroups (p < 0.05), while CaI was positively related to TBBMC increase in nonblack males and nonblack females.

Conclusion: These findings support the importance of public health efforts to increase physical activity in children and adolescents while assuring adequate calcium intake.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMC:

Bone mineral content

BMDCS:

Bone Mineral Density in ­Childhood Study

CaI:

Calcium Intake

CHGTO:

Changed to

DXA:

Dual Energy ­Absorptiometry

NICHD:

National Institute for Child health and Human ­Development

RCT:

Randomized Clinical Trial

SD:

Standard Deviation

SS:

Sums of Squares

TBBMC:

Total Body Bone Mineral Content

WBA:

Weight Bearing Activity

References

  1. Seeman E, Hopper J, Back L, Cooper M, Parkinson E, McKay J, et al. Reduced bone mass in daughters of women with osteoporosis. N Engl J Med. 1989;320:554–8.

    Article  CAS  PubMed  Google Scholar 

  2. Sandler R, Slemenda C, LaPorte R, Cauley J, Schramm M, Barresi M, et al. Postmenopausal bone density and milk consumption in childhood and adolescence. Am J Clin Nutr. 1985;42:270–4.

    CAS  PubMed  Google Scholar 

  3. NIH Consensus conference. Optimal calcium intake. NIH Consensus Development Panel on Optimal Calcium Intake. JAMA 1994;272(24):1942–8

    Google Scholar 

  4. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: Report of a WHO Study Group. World Health Organ Tech Rep Ser. 1994;843:1–29.

    Google Scholar 

  5. Heaney R, Abrams S, Dawson-Houghes B, Looker A, Marcus B, Matkovic V, et al. Peak bone mass. Osteoporos Int. 2000;11:985–1009.

    Article  CAS  PubMed  Google Scholar 

  6. Huncharek M, Muscat J, Kupelnick B. Impact of dairy products and dietary calcium on bone-mineral content in children: results of a meta-analysis. Bone. 2008;43(2):312–21.

    Article  CAS  PubMed  Google Scholar 

  7. Wosje K, Specker B. Role of calcium in bone health during childhood. Nutr Rev. 2000;58:253–68.

    Article  CAS  PubMed  Google Scholar 

  8. Forwood M, Burr D. Physical activity and bone mass: exercises in futility? Bone Miner. 1993;21:89–112.

    Article  CAS  PubMed  Google Scholar 

  9. Parfitt A. The two faces of growth: benefits and risks to bone integrity. Osteoporos Int. 1994;4:382–98.

    Article  CAS  PubMed  Google Scholar 

  10. Mansfield M, Emans S. Growth in female gymnasts: should training decrease during puberty? J Pediatr. 1993;122(2):237–40.

    Article  CAS  PubMed  Google Scholar 

  11. Janz K, Burns T, Levy S, Torner J, Willing M, Beck T, et al. Everyday activity predicts bone geometry in children: the Iowa bone development study. Med Sci Sports Exerc. 2004;36:1124–31.

    Article  PubMed  Google Scholar 

  12. Tobias J, Steer CD, Mattocks CG, Riddoch C, Ness AR. Habitual levels of physical activity influence bone mass in 11-year-old children from the United Kingdom: findings from a large population-based cohort. J Bone Miner Res. 2007;21:101–9.

    Google Scholar 

  13. Janz K, Gilmore J, Burns T, Levy S, Torner J, Willing M, et al. Physical activity augments bone mineral accrual in young children: the Iowa bone development study. J Pediatr. 2006;148:793–9.

    Article  PubMed  Google Scholar 

  14. Bailey D, McKay H, Mirwald R, Crocker PRE, Faulkner R. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the university of Saskatchewan bone mineral accrual study. J Bone Miner Res. 1999;14:1672–9.

    Article  CAS  PubMed  Google Scholar 

  15. Hind K, Burrows M. Weight-bearing exercise and bone mineral accrual in children and adolescents: a review of controlled trials. Bone. 2007;40(1):14–27.

    Article  CAS  PubMed  Google Scholar 

  16. Fuchs R, Bauer JJ, Snow CM. Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J Bone Miner Res. 2001;16(1):148–56.

    Article  CAS  PubMed  Google Scholar 

  17. MacKelvie K, Petit MA, Khan K, Beck T, McKay H. Bone mass and structure are enhanced following a 2-year randomized controlled trial of exercise in prepubertal boys. Bone. 2004;34:755–64.

    Article  PubMed  Google Scholar 

  18. MacKelvie K, Khan K, Petit MA, Janssen P, McKay H. A school-based exercise intervention elicits substantial bone health benefits: a 2-year randomized controlled trial in girls. Pediatrics. 2003;112:e447–52.

    Article  PubMed  Google Scholar 

  19. Baxter-Jones AD, Kontulainen SA, Faulkner RA, Bailey DA. A longitudinal study of the relationship of physical activity to bone mineral accrual from adolescence to young adulthood. Bone. 2008;43:1101–7.

    Article  PubMed  Google Scholar 

  20. Kalkwarf H, Gilsanz V, Lappe J, Zemel B, Horlick M, Oberfield S, et al. The bone mineral density in childhood study (BMDCS): bone mineral content and density according to age, sex, and race. J Clin Endocrinol Metab. 2007;92:2087–99.

    Article  CAS  PubMed  Google Scholar 

  21. Slemenda C, Miller J, Hui S, Reister T, Johnston C. Role of physical activity in the development of skeletal mass in children. J Bone Miner Res. 1991;6:1227–33.

    Article  CAS  PubMed  Google Scholar 

  22. Lappe J, Rafferty K, Lypaczewski G, Haynatzki G, Davies M. Girls on a high calcium diet gain weight at the same rate as girls on a normal diet: a pilot study. J Am Diet Assoc. 2004;104:1361–7.

    Article  CAS  PubMed  Google Scholar 

  23. Nader P, Bradley R, Houts R, McRitchie S, O’Brien M. Moderate-to-vigorous physical activity from ages 9 to 15 years. JAMA. 2008;300:295–305.

    Article  CAS  PubMed  Google Scholar 

  24. Baxter-Jones ADG, Faulkner RA, Forwood M, Mirwald RL, Bailey DA. Bone mineral accrual from 8 to 30 years of age: an estimation of peak bone mass. J Bone Miner Res. 2011;26(8):1729–39.

    Article  PubMed  Google Scholar 

  25. Garcia A, Broda M, Frenn M, Coviak C, Pender N, Ronis D. Gender and developmental differences in exercise beliefs among youth and prediction of their exercise behavior. J Sch Health. 1995;65:213–9.

    Article  CAS  PubMed  Google Scholar 

  26. O’Brien K, Abrams S, Liang L, Ellis K, Gagel R. Bone turnover response to changes in calcium intake is altered in girls and adult women in families with histories of osteoporosis. J Bone Miner Res. 1998;13:491–9.

    Article  PubMed  Google Scholar 

  27. McKay H, Petit MA, Schutz RW, Prior J, Barr S, Khan KM. Augmented trochanteric bone mineral density after modified physical education classes: a randomized school-based exercise intervention study in prepubescent and early pubescent children. J Pediatr. 2000;136(2):156–61.

    Article  CAS  PubMed  Google Scholar 

  28. Bass S, Pearce G, Bradney M, Hendrich E, Delmas P, Harding A, et al. Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts. J Bone Miner Res. 1998;13:500–7.

    Article  CAS  PubMed  Google Scholar 

  29. Kannus P, Haapasalo H, Sankelo M, Sievanen H, Pasanen M, Heinonen A, et al. Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players. Ann Intern Med. 1995;123:27–31.

    CAS  PubMed  Google Scholar 

  30. Gustavsson A, Thorsen K, Nordstrom P. A 3-year longitudinal study of the effect of physical activity on the accrual of bone mineral density in health adolescent males. Calcif Tissue Int. 2003;73:108–14.

    Article  CAS  PubMed  Google Scholar 

  31. Slemenda CW, Reister T, Hui SL, Miller J, Christian J, Johnston jr CC. Influences on skeletal mineralization in children and adolescents: evidence for varying effects of sexual maturation and physical activity. J Pediatr. 1994;125:201–7.

    Article  CAS  PubMed  Google Scholar 

  32. Bailey D, Baxter-Jones A, Mirwald R, Faulkner R. Bone growth and exercise studies: the complications of maturation. J Musculoskelet Neuronal Interact. 2003;3(4):335–7.

    CAS  PubMed  Google Scholar 

  33. Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, et al. The 2011 dietary reference intakes for calcium and vitamin D: what dietetics practitioners need to know. J Am Diet Assoc. 2011;111(4):524–7.

    Article  CAS  PubMed  Google Scholar 

  34. Bailey R, Dodd K, Goldman J, Gahche J, Dwyer J, Moshfegh A, et al. Estimation of total usual calcium and vitamin D intakes in the United States. J Nutr. 2010;140(4):817–22.

    Article  CAS  PubMed  Google Scholar 

  35. Braun M, Palacios C, Wigertz K, Jackman L, Bryant R, McCabe L, et al. Racial differences in skeletal calcium retention in adolescent girls with varied controlled calcium intakes. Am J Clin Nutr. 2007;85:1657–63.

    CAS  PubMed  Google Scholar 

  36. Weaver C, Osteoponosis: The early years. In: Coulstron A, Boushey C, editors. Nutrition in the prevention and treatment of disease. 2nd ed. New York: Academic; 2008.

    Google Scholar 

  37. Rose G, Day S. The population mean predicts the number of deviant individuals. BMJ. 1990;301:1031–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the study participants and their families for their dedication to this project. We thank the study staff members at each site who worked to achieve successful completion of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Lappe PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Lappe, J. et al. (2013). The Relationship of Weight-Bearing Physical Activity and Dietary Calcium Intake with Bone Mass Accrual in the Bone Mineral Density in Childhood Study Cohort. In: Burckhardt, P., Dawson-Hughes, B., Weaver, C. (eds) Nutritional Influences on Bone Health. Springer, London. https://doi.org/10.1007/978-1-4471-2769-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2769-7_31

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2768-0

  • Online ISBN: 978-1-4471-2769-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics