Advertisement

Prebiotics, Probiotics, Polyunsaturated Fatty Acids, and Bone Health

Chapter

Abstract

Improvement of peak bone mass in younger age and reducing bone loss in aging are two strategies to reduce the risk for developing osteoporosis. Modulating intestinal calcium absorption by modifying the diet can contribute to improvement of bone mass, and reduction of inflammation during menopause can help reduce the risk of bone loss. Calcium absorption takes place via an active process in the duodenum, modulated by active vitamin D, or by passive paracellular absorption that can take place throughout the intestine. Prebiotics are nondigestible carbohydrates which promote bacterial growth in the colon. Fermentation by the bacteria results in the production of organic acids which reduce the pH in the large intestine and may improve solubility of minerals increasing passive diffusion via the paracellular pathway. Increased cell proliferation and hypertrophy of the colon wall have also been reported, while some authors also report increased expression of calbindin-D9k, the protein responsible for carrying calcium through the intestinal cell. While the mechanism by which probiotics improve calcium absorption has not been proven, it is possible that the mechanism is similar to that of the prebiotics. Another dietary component that can affect intestinal calcium absorption is long-chain polyunsaturated fatty acids (LCPUFA). These have been shown to improve calcium absorption by modulating the action of vitamin D in the intestine, modulating intestinal membrane composition and thereby increasing activity of the membrane pumps responsible for transport of minerals across the basolateral membranes. The omega 3 LCPUFAs also have specific effects on bone cells and reduce inflammation which may be of benefit to bone especially during menopause. In addition, LCPUFAs may have a prebiotic effect, modulating gut microflora. The possible contribution of these dietary components to calcium absorption and bone maintenance in rats and younger as well as older adults is presented.

Keywords

Calcium absorption Prebiotics Probiotics Gut microflora Long-chain polyunsaturated fatty acids Bone density Rats Humans 

References

  1. 1.
    Heaney RP, Abrams S, Dawson-Hughes B, Looker A, Marcus A, Matkovic V, Weaver C. Peak bone mass. Osteoporosis Int. 2000;11:985–1009.CrossRefGoogle Scholar
  2. 2.
    Bronner F. Recent developments in intestinal calcium absorption. Nutr Rev. 2009;67(2):109–13.PubMedCrossRefGoogle Scholar
  3. 3.
    Bronner F, Pansu D. Nutritional aspects of calcium absorption. J Nutr. 1999;129:9–12.PubMedGoogle Scholar
  4. 4.
    Bronner F. Calcium. In: O’Dell BL, Sunde RA, editors. Handbook of nutritionally essential mineral elements. New York: Marcel Dekker; 1997. p. 13–61.Google Scholar
  5. 5.
    Park CY, Weaver CM. Calcium and bone health: influence of prebiotics. Funct Food Rev. 2011;3(2):62–72.Google Scholar
  6. 6.
    Roberfroid M, Slavin J. Nondigestible oligosaccharides. Crit Rev Food Sci Nutr. 2000;40(6):461–80.PubMedCrossRefGoogle Scholar
  7. 7.
    Roberfroid MB. Prebiotics and synbiotics: concepts and nutritional properties. Br J Nutr. 1998;80 Suppl 2:S197–202.PubMedGoogle Scholar
  8. 8.
    Roberfroid MB. Concepts of functional foods: the case of inulin and oligofructose. J Nutr. 1999;129:1398S–401.PubMedGoogle Scholar
  9. 9.
    Raschka L, Daniel H. Mechanisms underlying the effects of inulin-type fructans on calcium absorption in the large intestine of rats. Bone. 2005;37:728–35.PubMedCrossRefGoogle Scholar
  10. 10.
    Chonan O, Takahashi R, Watnuki M. Role of activity of gastrointestinal microflora in absorption of calcium and magnesium in rats fed beta-4 linked galactooligosaccharides. Biosci Biotechnol Biochem. 2001;65:1872–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Blottiere HM, Buecher B, Galmiche JP, Cherbut C. Molecular analysis of the effect of short-chain fatty acids on intestinal cell proliferation. Proc Nutr Soc. 2003;62:101–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Pérez-Conesa D, López G, Ros G. Effects of probiotic, prebiotic and symbiotic follow-up infant formulas on large intestine morphology and bone mineralisation in rats. J Sci Food Agric. 2007;87:1059–68.CrossRefGoogle Scholar
  13. 13.
    Weaver CM, Martin BR, Nakatsu CH, Armstrong AP, Clavijo A, McCabe LD, et al. Galactooligosaccharides improve mineral absorption and bone properties in growing rats through gut fermentation. J Agric Food Chem. 2011;59:6501–10.PubMedCrossRefGoogle Scholar
  14. 14.
    Ohta A, Motohashi Y, Ohtsuki M, Hirayama M, Adachi T, Sakuma K, et al. Dietary fructooligosaccharides change the concentration of calbindin-d9k differently in the mucosa of the small and large intestine of rats. J Nutr. 1998;128:934–9.PubMedGoogle Scholar
  15. 15.
    Takahara S, Morohashi T, Sano T, Ohta A, Yamada S, Sasa R. Fructooligosaccharide consumption enhances femoral bone volume and mineral conversion in rats. J Nutr. 2000;130:1792–5.PubMedGoogle Scholar
  16. 16.
    Ohta A, Ohtuki M, Takizawa T, Inaba H, Adachi T, Kimura S. Effects of fructooligosaccharides on the absorption of magnesium and calcium by cecectomised rats. Int J Vitam Nutr Res. 1994;64:316–23.PubMedGoogle Scholar
  17. 17.
    Ohta A, Ohtsuki M, Baba S, Adachi T, Sakata T, Sakaguchi EI. Calcium and magnesium absorption from the colon and rectum are increased in rats fed fructooligosaccharides. J Nutr. 1995;125:2417–24.PubMedGoogle Scholar
  18. 18.
    Taguchi A, Ohta A, Abe M, Baba S, Ohtsuki M, Takizawa T, et al. The influence of fructooligosac-charides on the bone of model rats with ovariectomised osteoporosis. Sci Rep Meija Seika Kaisha. 1994; 33: 34–43.Google Scholar
  19. 19.
    Delzenne N, Aertsens J, Verplaetse H, Roccaro M, Roberfroid M. Effect of fermentable fructooligosaccharides on mineral, nitrogen and energy digestive balance in the rat. Life Sci. 1995;57:1579–87.PubMedCrossRefGoogle Scholar
  20. 20.
    Roberfroid MB, Cumps J, Devogelaer JP. Dietary chicory inulin increases whole-body bone mineral density in growing male rats. J Nutr. 2002;132:3599–602.PubMedGoogle Scholar
  21. 21.
    Scholz-Ahrens K, Acil Y, Schrezenmeier J. Effect of oligofructose or dietary calcium on repeated calcium and phosphorus balances, bone mineralisation and trabecular structure in ovariectomised rats. Br J Nutr. 2002;88:365–77.PubMedCrossRefGoogle Scholar
  22. 22.
    Levrat MA, Remesy C, Demigne C. High propionate acid fermentation and mineral accumulation in the caecum adapted to different levels of inulin. J Nutr. 1991;121:1730–7.PubMedGoogle Scholar
  23. 23.
    Kruger MC, Brown KE, Collett G, Layton L, Schollum LM. The effect of fructooligosaccharides with various degrees of polymerization on calcium bioavailability in the growing rat. Exp Biol Med. 2003;228:683–8.Google Scholar
  24. 24.
    Chonan O, Matsumoto K, Watanuki M. Effect of galactooligosaccharides on calcium absorption and preventing bone loss in ovariectomised rats. Biosci Biotechnol Biochem. 1995;59:236–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Chonan O, Watanuki M. The effect of 6-galactooligosaccharides on bone mineralisation of rats adapted to different levels of dietary calcium. Int J Vitam Nutr Res. 1996;66:244–9.PubMedGoogle Scholar
  26. 26.
    Brommage R, Binacua C, Antille S, Carrie AL. Intestinal calcium absorption in rats is stimulated by dietary lactulose and other resistant sugars. J Nutr. 1993;123:2186–94.PubMedGoogle Scholar
  27. 27.
    Schulz AGM, Von Amelsvoort JMM, Beynen AC. Dietary native resistant starch but not retrograded resistant starch raises magnesium and calcium absorption in rats. J Nutr. 1993;123:1724–31.PubMedGoogle Scholar
  28. 28.
    Younes H, Coudray C, Bellanger J, Demigne C, Rayssiguier Y, Remesy C. Effects of two fermentable carbohydrates (inulin and resistant starch) and their combination on calcium and magnesium balance in rats. Br J Nutr. 2001;86:479–85.PubMedCrossRefGoogle Scholar
  29. 29.
    Roberfroid M. Dietary fibers, inulin and oligofructose, a review comparing their physiological effects. Crit Rev Food Sci Nutr. 1993;33:103–48.PubMedCrossRefGoogle Scholar
  30. 30.
    Weaver CM, Martin BR, Story JA, Hutchinson I, Sanders L. Novel fibers increase bone calcium content and strength beyond efficiency of large intestine fermentation. J Agric Food Chem. 2010;58:8952–7.CrossRefGoogle Scholar
  31. 31.
    Van der Heuvel EGHM, Muys T, Van Dokkum W, Schaafsma G. Oligofructose stimulates calcium absorption in adolescents. Am J Clin Nutr. 1999;69:544–8.PubMedGoogle Scholar
  32. 32.
    Griffin IJ, Davila PM, Abrams SA. Non-digestible oligosaccharides and calcium absorption in girls with adequate calcium intakes. Br J Nutr. 2002;87(S2):S187–91.PubMedCrossRefGoogle Scholar
  33. 33.
    Griffin IJ, Hicks PMD, Heaney RP, Abrams SA. Enriched chicory inulin increases calcium absorption mainly in girls with lower calcium absorption. Nutr Res. 2003;23:901–9.CrossRefGoogle Scholar
  34. 34.
    Coudray C, Bellanger J, Castiglia-Delavaud C, Remesy C, Vermorel M, Rayssiguier Y. Effect of soluble or partly soluble dietary fibers supplementation on absorption and balance of calcium, magnesium, iron and zinc in healthy young men. Eur J Clin Nutr. 1997;151:375–80.CrossRefGoogle Scholar
  35. 35.
    Van der Heuvel EGHM, Schaafsma G, Muys T, Van Dokkum W. Nondigestible oligosaccharides do not interfere with calcium and nonheme iron absorption in young healthy men. Am J Clin Nutr. 1998;67:445–51.PubMedGoogle Scholar
  36. 36.
    Martin BD, Braun MM, Wigertz K, Bryant R, Zhao Y, Lee WH, et al. Fructo-oligosaccharides and calcium absorption and retention in adolescent girls. J Am Coll Nutr. 2010;29(4):382–6.PubMedGoogle Scholar
  37. 37.
    Abrams SA, Griffin IJ, Hawthorne KM, Liang L, Gunn SK, Darlington G, et al. A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents. Am J Clin Nutr. 2005;82:471–6.PubMedGoogle Scholar
  38. 38.
    Tahiri M, Tressol JC, Arnaud J, Bornet FRJ, Bouteloup-Demange C, Feillet-Coudray C, et al. Effect of short-chain fructooligosaccharides on intestinal calcium absorption and calcium status in postmenopausal women: a stable-isotope study. Am J Clin Nutr. 2003;77:449–57.PubMedGoogle Scholar
  39. 39.
    Holloway L, Moynihan S, Abrams SA, Kent K, Hsu AR, Friedlander AL. Effects of oligofructose-enriched inulin on intestinal absorption of calcium and magnesium and bone turnover markers in postmenopausal women. Br J Nutr. 2007;97:365–72.PubMedCrossRefGoogle Scholar
  40. 40.
    Coxam V. Inulin type fructans and bone health: state of the art and perspectives in the management of osteoporosis. Br J Nutr. 2005;93(Suppl):S111–23.PubMedCrossRefGoogle Scholar
  41. 41.
    De Vrese M. Health benefits of probiotics and prebiotics in women. Menopause Int. 2009;15:35–40.PubMedCrossRefGoogle Scholar
  42. 42.
    Coxam V. Current data with inulin-type fructans and calcium, targeting bone health in adults. J Nutr. 2007;137:2527S–33.PubMedGoogle Scholar
  43. 43.
    Abrams SA, Griffin IJ, Hawthorne KM. Young adolescents who respond to an inulin-type fructan substantially increase total absorbed calcium and daily calcium accretion to the skeleton. J Nutr. 2007;137:2524S–6.PubMedGoogle Scholar
  44. 44.
    Kim YY, Jang KH, Lee EY, Cho Y, Kang SA, Ha WK, et al. The effect of chicory fructan fiber on calcium absorption and bone metabolism in Korean postmenopausal women. Nutr Sci. 2004;7:151–7.Google Scholar
  45. 45.
    Chow J-MC. Probiotics and prebiotics: a brief overview. J Renal Nutr. 2002;12(2):76–86.CrossRefGoogle Scholar
  46. 46.
    Scholz-Ahrens KE, Ade P, Marten B, Weber P, Timm W, Asil Y, et al. Prebiotics, probiotics and symbiotic affect mineral absorption, bone mineral content, and bone structure. J Nutr. 2007;137:838S–46.PubMedGoogle Scholar
  47. 47.
    Beynen AC, Baas JC, Hoekemeijer PE, Kappert HJ, Bakker MH, Koopman JP, et al. Faecal bacterial profile, nitrogen excretion and mineral absorption in healthy dogs fed supplemental oligofructose. J Anim Physiol Anim Nutr (Berl). 2002;86:298–305.CrossRefGoogle Scholar
  48. 48.
    Minamida K, Sujaya IN, Tamura A, Shigematsu N, Sone T, Yokota A, et al. The effects of di-D-fructofuranose-1,2:2,3-dianhydride (DFA III) administration on human intestinal microbiota. J Biosci Bioeng. 2004;98(4):244–50.PubMedGoogle Scholar
  49. 49.
    Igarashi M, Liyama Y, Kato R, Tomita M, Asami N, Ezawa I. Effect of Bifidobacterium longum and ­lactulose on the strength of bone in ovariectomised osteoporosis rat model. Bifidus. 1994;7:139–47.Google Scholar
  50. 50.
    Ghanem KZ, Badawy IH, Abdel-Salam AM. Influence of yoghurt and probiotic yoghurt on the absorption of calcium, magnesium, iron and bone mineralisation in rats. Milk Sci Int. 2004;59(9–10):472–5.Google Scholar
  51. 51.
    Perez-Conesa D, Lopez G, Ros G. Effects of probiotic, prebiotic and symbiotic follow-up infant formulas on large intestine morphology and bone mineralisation in rats. J Sci Food Agric. 2007;87(6):1059–68.CrossRefGoogle Scholar
  52. 52.
    Narva M, Rissanen J, Jussi H, Heiki V, Kalervo V, Riita K. Effects of bioactive peptide, valyl-prolyl-proline (VPP), and Lactobacillus helveticus fermented milk containing VPP on bone loss in ovariectomized rats. Ann Nutr Metab. 2007;51:65–74.PubMedCrossRefGoogle Scholar
  53. 53.
    Perez-Conesa D, Lopez G, Abellan P, Ros G. Bioavailability of calcium, magnesium and phosphorous in rats fed probiotic, prebiotic and symbiotic powder follow-up infant formulas and their effect on physiological and nutritional parameters. J Sci Food Agric. 2006;86:2327–36.CrossRefGoogle Scholar
  54. 54.
    Kruger MC, Fear A, Chua W-H, Plimmer GG, Schollum LM. The effect of Lactobacillus rhamnosus HN001 on mineral absorption and bone health in growing male and ovariectomised female rats. Dairy Sci Technol. 2009;89:219–31.CrossRefGoogle Scholar
  55. 55.
    Narva M, Nevala R, Poussa T, Korpela R. The effect of Lactobacillus helveticus fermented milk on acute changes in calcium metabolism in postmenopausal women. Eur J Nutr. 2004;43(2):61–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Cheung ALTF, Wilcox G, Walker KZ, Shah NP, Strauss B, Ashton JF, et al. Fermentation of calcium-fortified soya milk does not appear to enhance acute calcium absorption in osteopenic post-menopausal women. Br J Nutr. 2011;105:283–6.CrossRefGoogle Scholar
  57. 57.
    Corwin RL, Hartman TJ, Maczuga SA, Graubard BI. Dietary saturated fat intake is inversely associated with bone density in humans: analysis of NHANES III. J Nutr. 2006;136:159–65.PubMedGoogle Scholar
  58. 58.
    Orchard TS, Cauley JA, Frank GC, Neuhouser ML, Robinson JG, Snetselaar FT, et al. Fatty acid consumption and risk of fracture in the Women’s Health Initiative. Am J Clin Nutr. 2010;92:1452–60.PubMedCrossRefGoogle Scholar
  59. 59.
    Farina EK, Kiel DP, Roubenoff R, Schaefer EJ, Cupples LA, Tucker KL. Protective effects of fish intake and interactive effects of long-chain polyunsaturated fatty acid intakes on hip bone mineral density in older adults: the Framingham Osteoporosis Study. Am J Clin Nutr. 2011;93:1142–51.PubMedCrossRefGoogle Scholar
  60. 60.
    Farina EK, Kiel DP, Roubenoff R, Schaefer EJ, Cupples LA, Tucker L. Plasma phosphatidylcholine concentrations of polyunsaturated fatty acids are differentially associated with hip bone mineral density and hip fracture in older adults: the Framingham Osteoporosis Study. J Bone Miner Res. 2012;27(5):1222–30.PubMedCrossRefGoogle Scholar
  61. 61.
    Virtanen JK, Mozaffarian D, Cauley JA, Mukamal K, Robins J, Siscovick DS. Fish consumption, bone mineral density, and risk of hip fracture among older adults: the Cardiovascular Health Study. J Bone Miner Res. 2010;25(9):1972–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Fernandes G, Lawrence R, Sun D. Protective role of n-3 lipids and soy protein in osteoporosis. Prostaglandins Leukot Essent Fatty Acids. 2003;68:361–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Albertazzi P, Coupland K. Polyunsaturated fatty acids. Is there a role in postmenopausal osteoporosis prevention? Maturitas. 2002;42:13–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Maxton DG, Cynk EU, Jenkins AP, Thompson RP. Effect of dietary fat on the small intestinal mucosa. Gut. 1989;30:1252–5.PubMedCrossRefGoogle Scholar
  65. 65.
    Hart MH. Essential fatty acid deficiency and postsection mucosal adaptation in the rat. Gastroenterology. 1988;94:682–8.PubMedGoogle Scholar
  66. 66.
    Jenkins AP, Ghatai MA, Bloom SR, Thompson RP. Effects of bolus doses of fat on small intestinal structure and release of gastrin, cholecystokinin, peptide tyrosine-tyrosine, and enteroglucagon. Gut. 1992;33:218–23.PubMedCrossRefGoogle Scholar
  67. 67.
    Kruger MC, Horrobin DF. Calcium metabolism, osteoporosis and essential fatty acids: a review. Prog Lipid Res. 1997;36:131–51.PubMedCrossRefGoogle Scholar
  68. 68.
    Haag M, Magada NO, Claassen N, Bohmer LH, Kruger MC. Omega-3 fatty acids modulate ATPases involved in duodenal Ca absorption. Prostaglandins Leukot Essent Fatty Acids. 2003;68:423–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Leonard F, Haag M, Kruger MC. Modulation of intestinal vitamin D receptor availability and calcium ATPase activity by essential fatty acids. Prostaglandins Leukot Essent Fatty Acids. 2001;64:147–50.PubMedCrossRefGoogle Scholar
  70. 70.
    Van Papendorp DH, Coetzer H, Kruger MC. Biochemical profile of osteoporotic patients on essential fatty acid supplementation. Nutr Res. 1995;15:325–34.CrossRefGoogle Scholar
  71. 71.
    Kruger MC, de Winter R, Van Papendorp DH, Gericke GJ. Calcium, gamma-linolenic acid and eicosapentaenoic acid supplementation in senile osteoporosis. Aging Clin Exp Res. 1998;10:385–94.Google Scholar
  72. 72.
    Salari P, Rezaie A, Larijani B, Abdollahi M. A systematic review of the impact of n-3 fatty acids in bone health and osteoporosis. Med Sci Monit. 2008;14(3):RA37–44.PubMedGoogle Scholar
  73. 73.
    Martin-Bautista E, Muñoz-Torres M, Fonolla J, Quesada M, Poyatos A, Lopez-Huertas E. Improvement of bone formation biomarkers after 1-year consumption with milk fortified with eicosapentaenoic acid, docosahexaenoic acid, oleic acid, and selected vitamins. Nutr Res. 2010;30:320–6.PubMedCrossRefGoogle Scholar
  74. 74.
    Appleton KM, Fraser WD, Rogers PJ, Ness AR, Tobias JH. Supplementation with a low dose-moderate dose of n-3 long chain PUFA has no short-term effect on bone resorption in human adults. Br J Nutr. 2011;105:1145–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Tartibian B, Maleki BH, Kanaley J, Sadeghi K. Long-term aerobic exercise and omega-3 supplementation modulate osteoporosis through inflammatory mechanisms in post-menopausal women: a randomized, repeated measures study. Nutr Metab. 2011;8:71–83.CrossRefGoogle Scholar
  76. 76.
    Järvinen R, Tuppurainen M, Erkkila AT, Penttinen P, Kärkkäinen M, Salovaara K, et al. Associations of dietary polyunsaturated fatty acids with bone mineral density in elderly women. Eur J Clin Nutr. 2012;66:496–503.PubMedCrossRefGoogle Scholar
  77. 77.
    Poulsen RC, Moughan PJ, Kruger MC. Long-chain polyunsaturated fatty acids and the regulation of bone metabolism. Exp Biol Med. 2007;232:1275–88.CrossRefGoogle Scholar
  78. 78.
    Bolton-Smith C, Woodward M. Evidence for age-related differences in the fatty acid composition of human adipose tissue, independent of diet. Eur J Clin Nutr. 1997;51:619–24.PubMedCrossRefGoogle Scholar
  79. 79.
    Weiss LA, Barrett-Connor E, von Muhlen D. Ration of n-6 to n-3 fatty acids and bone mineral density in older adults. The Rachero Bernardo study. Am J Clin Nutr. 2005;81:934–8.PubMedGoogle Scholar
  80. 80.
    Giltay EJ, Gooren LJG, Toorians A, Katan MB, Zock PL. Docosahexaenoic acid concentrations are higher in women than in men because of estrogenic effects. Am J Clin Nutr. 2004;80:1167–74.PubMedGoogle Scholar
  81. 81.
    McLean RR. Proinflammatory cytokines and osteoporosis. Curr Osteoporos Rep. 2009;7:134–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Miggiano GA, Gagliardi L. Diet, nutrition and bone health. Clin Ther. 2005;156:47–56.Google Scholar
  83. 83.
    Kruger MC, Coetzee M, Haag M, Weiler H. Long-chain polyunsaturated fatty acids: selected mechanisms of action on bone. Prog Lipid Res. 2010;49:439–49.CrossRefGoogle Scholar
  84. 84.
    Bomba A, Nemcová R, Gancarciková S, Herich R, Pisti J, Révajová V, et al. The influence of omega-3 polyunsaturated fatty acids (ometa-3 pufa) on lactobacilli adhesion to the intestinal mucosa and on immunity in gnotobiotic piglets. Berl Munch Tierarztl Wochenschr. 2003;116(7–8):312–6.PubMedGoogle Scholar
  85. 85.
    Andersen AD, Mølbak L, Michaelsen KF, Lauritzen L. Molecular fingerprints of the human fecal microbiota from 9 to 18 months old and the effect of fish oil supplementation. J Pediatr Gastroenterol Nutr. 2011;53(3):303–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Nielsen S, Nielsen DS, Lauritzen L, Jakobsen M, Michaelsen KF. Impact of diet on the intestinal microbiota in 10-month-old infants. J Pediatr Gastroenterol Nutr. 2007;44:613–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Kankaanpää PE, Salminen SJ, Isolauri E, Lee YK. The influence of polyunsaturated fatty acids on probiotic growth and adhesion. FEMS Microbiol Lett. 2001;194:149–53.PubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Department of Human Nutrition and Physiology, Institute of Food, Nutrition and Human HealthMassey UniversityPalmerston NorthNew Zealand
  2. 2.Department of PhysiologyUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations