Skip to main content

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

Abstract

Structures to be analyzed in medical images are usually inaccessible. The sufficiency and correctness of employed domain knowledge cannot be proven. Hence, validation of an analysis method estimates the correctness of results from tests on a limited number of samples. For carrying out the validation suitable samples need to be selected, comparison measures have to be chosen that reflect the quality of the result, and a norm is required against which the method is tested. These aspects are realized differently for a delineation task, a detection task, or a registration task. Requirements, means, and limitations of validation will be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aron A, Aron EN, Coups E (2004) Statistics for the behavioral and social sciences: a brief course. Prentice Hall, New York

    Google Scholar 

  • Chalana V, Kim Y (1997) A methodology for evaluation of boundary detection algorithms on medical images. IEEE Trans Med Imaging 16(5):642–652

    Article  Google Scholar 

  • Cocosco CA, Kollokian V, Kwan RKS, Pike GB, Evans AC (1997) BrainWeb: online interface to a 3d MRI simulated brain database. NeuroImage 5:452

    Google Scholar 

  • Collins D, Zijdenbos A, Kollokian V, Sled J, Kabani N, Holmes C, Evans A (1998) Design and construction of a realistic digital brain phantom. IEEE Trans Med Imaging 17(3):463–468

    Article  Google Scholar 

  • Crum WR, Camara O, Hill DLG (2006) Generalized overlap measures for evaluation and validation in medical image analysis. IEEE Trans Med Imaging 25(11):1451–1461

    Article  Google Scholar 

  • Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):297–302

    Article  Google Scholar 

  • Garrity JM, Segars WP, Knisley SB, Tsui BMW (2003) Development of a dynamic model for the lung lobes and airway tree in the NCAT phantom. IEEE Trans Nucl Sci 50(3):378–383

    Article  Google Scholar 

  • Gerig G, Jomier M, Chakos M (2001) Valmed: a new validation tool for assessing and improving 3D object segmentation. In: Proc 4th intl conf medical image computing and computer-assisted intervention (MICCAI 2001). LNCS, vol 2208, pp 516–523

    Chapter  Google Scholar 

  • Jaccard P (1912) The distribution of flora in the alpine zone. New Phytol 11:37–50

    Article  Google Scholar 

  • Jensen JA (1996) Field: a program for simulating ultrasound systems. In: 10th Nordic-Baltic conf biomedical imaging, medical & biological engineering & computing, vol 34(Suppl 1(part 1)), pp 351–353

    Google Scholar 

  • Jensen JA, Svendsen NB (1992) Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers. IEEE Trans Ultrason Ferroelectr Freq Control 39(2):262–267

    Article  Google Scholar 

  • Jensen JA (2004) Simulation of advanced ultrasound systems using field II. IEEE Int Symp Biomed Imaging: Nano Macro I:636–639

    Google Scholar 

  • Jannin P, Fitzpatrick JM, Hawkes DJ, Pennec X, Shahidi R, Vannier MW (2002) Validation of medical image processing in image-guided therapy. IEEE Trans Med Imaging 21(12):1445–1449

    Article  Google Scholar 

  • Kwan RKS, Evans AC, Pike GB (1999) MRI simulation-based evaluation of image-processing and classification methods. IEEE Trans Med Imaging 18(11):1085–1097

    Article  Google Scholar 

  • Pham DL, Xu C, Prince JL (2000) Current methods in medical image segmentation. Annu Rev Biomed Eng 2:315–337

    Article  Google Scholar 

  • Popovic A, de la Fuente M, Engelhardt M, Radermacher K (2007) Statistical validation metric for accuracy assessment in medical image segmentation. Int J Comput Assisted Radiol Surg 2(3–4):169–181

    Article  Google Scholar 

  • Segars WP, Lalush DS, Tsui BMW (1999) A realistic spline-based dynamic heart phantom. IEEE Trans Nucl Sci 46(3):503–506

    Article  Google Scholar 

  • Segars WP, Tsui BMW (2009) MCAT to XCAT: evolution of 4-d computerized phantoms for imaging research. Proc IEEE 97:1954–1968

    Article  Google Scholar 

  • Shcherbinin S, Celler A, Belhocine T, Vanderwerf A, Driedger A (2008) Accuracy of quantitative reconstructions in SPECT/CT imaging. Phys Med Biol 53(17):4595–4604

    Article  Google Scholar 

  • Spitzer V, Ackerman MJ, Scherzinger AL, Whitlock D (1996) The visible human male: a technical report. J Am Med Inform Assoc 3(2):118–130

    Article  Google Scholar 

  • Toh MY, Falk RB, Main JS (1996) Interactive brain atlas with the visible human project data: development methods and techniques. RadioGraphics 16:1201–1206

    Google Scholar 

  • Udupa JK, LeBlanc VR, Zhuge Y, Imielinska C, Schmidt H, Currie LM, Hirsch BE, Woodburn J (2006) A framework for evaluating image segmentation algorithms. Comput Med Imaging Graph 30:75–87

    Article  Google Scholar 

  • Veress AI, Segars WP, Weiss JA, Tsui BMW, Gullberg GT (2006) Normal and pathological NCAT image and phantom data based on physiologically realistic left ventricle finite-element models. IEEE Trans Med Imaging 25(12):1604–1616

    Article  Google Scholar 

  • Warfield SK, Dengler J, Zaers J, Guttmann CR, Wells WM III, Ettinger GJ, Hiller J, Kikinis R (1995) Automatic identification of grey matter structures from MRI to improve the segmentation of white matter lesions. J Image Guid Surg 1(6):326–338

    Article  Google Scholar 

  • Warfield SK, Zou KH, Wells WM III (2004) Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 23(7):903–921

    Article  Google Scholar 

  • Welch BL (1947) The generalization of “Student’s” problem when several different population variances are involved. Biometrika 34(1–2):28–35

    MathSciNet  MATH  Google Scholar 

  • Yoo TS, Ackerman MJ, Vannier MW (2000) Toward a common validation methodology for segmentation and registration algorithms. In: Medical image computing and computer-assisted intervention—MICCAI 2000. LNCS, vol 1935, pp 217–225

    Google Scholar 

  • Zou KH, Warfield SK, Bharatha A, Tempany CMC, Kaus MR, Haker SJ, Wells WM III, Jolesz FA, Kikinis R (2004) Statistical validation of image segmentation quality based on a spatial overlap index. Acad Radiol 11(2):178–189

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Toennies, K.D. (2012). Validation. In: Guide to Medical Image Analysis. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-2751-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2751-2_13

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2750-5

  • Online ISBN: 978-1-4471-2751-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics