Using Electric Vehicles for Road Transport

  • Malcolm D. McCulloch
  • Justin D. K. Bishop
  • Reed T. Doucette


Road vehicles account for almost half of the energy used in all transport modes globally. Reducing energy use in vehicles is key to meeting the forecast increase in demand for transport, while improving energy security and mitigating climate change. Non-powertrain vehicle options may reduce fuel consumption by at least 15%. Electric motors are the significant powertrain option to reduce energy use in vehicles because they are more efficient than the internal combustion engine and can recover a portion of the vehicle kinetic energy during braking. Conventionally, batteries are used to meet both the power and energy demands of electric vehicles and their variants. However, batteries are well-suited to store energy, while ultra-capacitors and high-speed flywheels are better placed to meet the bidirectional, high power requirements of real-world driving. Combining technologies with complementary strengths can yield a lower cost and more efficient energy storage system. While pure and hybrid electric vehicles use less energy than internal combustion engine vehicles, their ability to mitigate climate change is a function of the emissions intensity of the processes used to generate their electricity.


Electric Vehicle Hybrid Electric Vehicle Internal Combustion Engine Energy Storage System Drive Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    IEA (2010) Key World Energy Statistics 2010. International Energy Agency, Paris.
  2. 2.
    Fulton L, Eads G (2004) IEA/SMP Model documentation and reference case projection. International Energy Agency/World Business Council for Sustainable Development, Paris.
  3. 3.
    IEA (2009) Key World Energy Statistics 2009. International Energy Agency, ParisGoogle Scholar
  4. 4.
    Fulton L (2004) The IEA/SMP Transportation model. International Energy Agency/World Business Council for Sustainable Development, Paris.
  5. 5.
    André M (2004) Real-world driving cycles for measuring cars pollutant emissions––Part A: the ARTEMIS European driving cycles. INRETS-LTE 0411. Institut National de Recherche sur les Transports et leur Securite (INRETS), BronGoogle Scholar
  6. 6.
    Joumard R, André M, Vidon R, Tassel P, Pruvost C (2000) Influence of driving cycles on unit emissions from passenger cars. Atmos Environ 34(27):4621CrossRefGoogle Scholar
  7. 7.
  8. 8.
    Fenske G, Erck R, Ajayi L, Erdemir A, Eryilmaz O (2006) Parasitic energy loss mechanisms impact on vehicle system efficiency. Argonne National Laboratory, 2006, Illinois.
  9. 9.
    Hucho WH (ed) (1987) Aerodynamics of road vehicles: from fluid mechanics to vehicle engineering. Cambridge University Press, CambridgeGoogle Scholar
  10. 10.
    Hucho WH, Sovran G (1993) Aerodynamics of road vehicles. Annu Rev Fluid Mech 25:485. doi:  10.1146/annurev.fl.25.010193.002413 CrossRefGoogle Scholar
  11. 11.
    Koike M, Nagayoshi T, Hamamoto N (2004) Research on aerodynamic drag reduction by Vortex Generators. Mitsubishi Motors Tech Rev 16:11. Google Scholar
  12. 12.
    Nunney MJ (2007) Light and heavy vehicle technology, 4th edn. Elsevier, AmsterdamGoogle Scholar
  13. 13.
    Guzzella L, Sciarretta A (2007) Vehicle propulsion systems: introduction to modeling and optimization, 2nd edn. Springer, BerlinGoogle Scholar
  14. 14.
    IEA (2008) Energy Technology Perspectives 2008—Scenarios and Strategies to 2050. International Energy Agency, ParisGoogle Scholar
  15. 15.
    IEA (2009) Transport, energy and CO2. International Energy Agency, Paris.
  16. 16.
    Kobayashi S, Plotkin S, Ribeiro SK (2009) Energy efficiency technologies for road vehicles. Energy Effic 2(2):125. doi:  10.1007/s12053-008-9037-3 CrossRefGoogle Scholar
  17. 17.
    Beaudoin JF, Cadot O, Aider JL, Gosse K, Paranthoën P, Hamelin B, Tissier M, Allano D, Mutabazi I, Gonzales M et al (2004) Cavitation as a complementary tool for automotive aerodynamics. Exp Fluids 37(5):763. doi:  10.1007/s00348-004-0879-y CrossRefGoogle Scholar
  18. 18.
    TRB (2006) Tires and passenger vehicle fuel economy: informing consumers, improving performance––special report 286. The National Academy of Sciences, USA.
  19. 19.
    Goldberg LH (2000) Green electronics, green bottom line: environmentally responsible engineering. Butterworth-Heinemann, Oxford, Chap. 24Google Scholar
  20. 20.
    Bjelkengren C (2008) The impact of mass decompounding on assessing the value of vehicle lightweighting. PhD thesis, Massachusetts Institute of Technology, Massachusetts.
  21. 21.
    Cheah LW (2010) Cars on a diet: the material and energy impacts of passenger vehicle weight reduction in the U.S. PhD thesis, Massachusetts Institute of Technology, Massachusetts. doi:
  22. 22.
    Malen DE, Reddy K (2007) Preliminary vehicle mass estimation using empirical subsystem influence coefficients. Auto/Steel Partnership. Ann Arbor.
  23. 23.
    Rakopoulos CD, Glakoumis EG (2006) Second-law analyses applied to internal combustion engines operation. Prog Energy Combust Sci 32(1):2. doi:  10.1016/j.pecs.2005.10.001 CrossRefGoogle Scholar
  24. 24.
    Brusstar M, Stuhldreher M, Swain D, Pidgeon W (2002) High efficiency and low emissions from a port-injected engine with neat alcohol fuels. 2002-01-2743. Society of Automotive Engineers, Byron Bay.
  25. 25.
    Husain I (2003) Electric and hybrid vehicles. CRC Press, FloridaGoogle Scholar
  26. 26.
    Boretti A (2010) Comparison of fuel economies of high efficiency diesel and hydrogen engines powering a compact car with a flywheel based kinetic energy recovery systems. Int J Hydrogen Energy 35(16):8417. doi:  10.1016/j.ijhydene.2010.05.031 CrossRefGoogle Scholar
  27. 27.
    Williamson SS, Emadi A, Rajashekara K (2007) Comprehensive efficiency modeling of electric traction motor drives for hybrid electric vehicle propulsion applications. IEEE Trans Veh Technol 56(4):1651. doi: 10.1109/TVT.2007.896967 CrossRefGoogle Scholar
  28. 28.
    Hughes E (1995) Electrical technology, 7th edn. Longman, LondonGoogle Scholar
  29. 29.
    Kenjo T, Nagamori S (2003) Brushless motors: advanced theory and modern applications. Sogo Electronics Press, TokyoGoogle Scholar
  30. 30.
    Woolmer TJ, McCulloch MD (2007) Analysis of the yokeless and segmented armature machine. In: Electric machines and drives conference (IEMDC). Antalya, Turkey, pp 704–708. doi:  10.1109/IEMDC.2007.382753
  31. 31.
    Zeraoulia M, Benbouzid MEH, Diallo D (2006) Electric motor drive selection issues for HEV propulsion systems: a comparative study. IEEE Trans Veh Technol 55(6):1756. doi: 10.1109/TVT.2006.878719 CrossRefGoogle Scholar
  32. 32.
    Chau KT, Chan CC, Liu C (2008) Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles. IEEE Trans Ind Electron 55(6):2246. doi: 10.1109/TIE.2008.918403 CrossRefGoogle Scholar
  33. 33.
    Westbrook MH (2001) The electric car: development and future of battery, hybrid, and fuel-cell cars. The Institution of Electrical Engineers, LondonGoogle Scholar
  34. 34.
    West JGW (1994) DC, induction, reluctance and PM motors for electric vehicles. Power Eng J 8(2):77. doi: 10.1049/pej:19930203 CrossRefGoogle Scholar
  35. 35.
    Uematsu T, Wallace RS (1995) Design of a 100 kW switched reluctance motor for electric vehicle propulsion. In: Tenth annual applied power electronics conference and exposition (APEC), vol 1. Dallas, USA, pp 411–415. doi:  10.1109/APEC.1995.468981
  36. 36.
    Miller JM (2004) Propulsion systems for hybrid vehicles. The Institution of Electrical Engineers, LondonCrossRefGoogle Scholar
  37. 37.
    Lukic SM, Cao J, Bansal RC, Rodriguez F, Emadi A (2008) Energy storage systems for automotive applications. IEEE Trans Ind Electron 55(6):2258. doi: 10.1109/TIE.2008.918390 CrossRefGoogle Scholar
  38. 38.
    Burke A, Zhao H (2010) Simulations of plug-in hybrid vehicles using advances lithium batteries and ultracapacitors on various driving cycles. UCD-ITS- RR-10-02. University of California-Davis Institute of Transportation Studies, DavisGoogle Scholar
  39. 39.
    Rydh CJ, Sandén BA (2005) Energy analysis of batteries in photovoltaic systems. Part I: performance and energy requirements. Energy Convers Manag 46(11–12):1957. doi:  10.1016/j.enconman.2004.10.003 CrossRefGoogle Scholar
  40. 40.
    Divya KC, Østergaard J (2009) Battery energy storage technology for power systems—an overview. Electr Power Syst Res 79(4):511. doi: 10.1016/j.epsr.2008.09.017 CrossRefGoogle Scholar
  41. 41.
    Palaćın MR (2009) Recent advances in rechargeable battery materials: a chemist’s perspective. Chem Soc Rev 38:2565. doi:  10.1039/b820555h CrossRefGoogle Scholar
  42. 42.
    Berndt D (2003) Battery technology handbook, 2nd edn. Expert Verlag, Renningen-Malsheim, Chap. 1, pp 1, 5, 6Google Scholar
  43. 43.
    Cross D, Hilton J (2008) High speed flywheel based hybrid systems for low carbon vehicles. In: IET hybrid and eco-friendly vehicle conference (HEVC). Coventry, UKGoogle Scholar
  44. 44.
    Schoenung SM, Hassenzahl WV (2003) Long- vs. short-term energy storage technologies analysis a life-cycle cost study a study for the doe energy storage systems program. SAND2003-2783. Sandia National Laboratories, Washington.
  45. 45.
    Lipman TE, Delucchi MA (2003) Hybrid-electric vehicle design retail and life-cycle cost analysis. UCD-ITS-RR-03-01. Energy and Resources Group, University of California, BerkeleyGoogle Scholar
  46. 46.
    Dixon J, Nakashima I, Arcos EF, Ortuzar M (2010) Electric vehicle using a combination of ultracapacitors and ZEBRA battery. IEEE Trans Ind Electr 57(3):943. doi: 10.1109/TIE.2009.2027920 CrossRefGoogle Scholar
  47. 47.
    Frenzel B, Kurzwell P, Roönnebeck H (2011) Electromobility concept for racing cars based on lithium-ion batteries and supercapacitors. J Power Sour 196(12):5364. doi:  10.1016/j.jpowsour.2010.10.057 CrossRefGoogle Scholar
  48. 48.
    Burke A, Miller M (2011) The power capability of ultracapacitors and lithium batteries for electric and hybrid vehicle applications. J Power Sour 196(1):514. doi: 10.1016/j.jpowsour.2010.06.092
  49. 49.
    Auer J, Sartorelli G, Miller J (2006) In: IET hybrid vehicle conference. Coventry, UK, pp 79–90Google Scholar
  50. 50.
    Van den Bossche P, Vergels F, Van Mierlo J, Matheys J, Van Autenboer W (2006) SUBAT: an assessment of sustainable battery technology. J Power Sour 162(2):913. doi: 10.1016/j.jpowsour.2005.07.039 Google Scholar
  51. 51.
    Chan CC (2007) The state of the art of electric, hybrid, and fuel cell vehicles. Proc IEEE 95(4):704. doi: 10.1109/JPROC.2007.892489
  52. 52.
    Karden E, Ploumen S, Fricke B, Miller T, Snyder K (2007) Energy storage devices for future hybrid electric vehicles. J Power Sour 168(1):2. doi: 10.1016/j.jpowsour.2006.10.090 Google Scholar
  53. 53.
    Khaligh A, Li Z (2010) Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: state of the art. IEEE Trans Veh Technol 59(6):2806. doi: 10.1109/TVT.2010.2047877
  54. 54.
    Toyota Prius Technical Specifications. Accessed 21 July 2011
  55. 55.
    Gaines L, Cuenca R (2000) Costs of lithium–ion batteries for vehicles. ESD-42. Argonne National Laboratory, IllinoisGoogle Scholar
  56. 56.
    Gao Y, Gay SE, Ehsani M, Thelen RF, Hebner RE (2003) Flywheel electric motor/generator characterization for hybrid vehicles. In: IEEE 58th vehicular technology conference-fall, vol. 5. Orlando, USA, pp 3321–3325. doi:  10.1109/VETECF.2003.1286291
  57. 57.
    Diego-Ayala U, Martinez-Gonzalez P, McGlashan N, Pullen KR (2008) The mechanical hybrid vehicle: an investigation of a flywheel-based vehicular regenerative energy capture system. Proc Inst Mech Eng, Part D: J Automob Eng 222(11):2087. doi: 10.1243/09544070JAUTO677
  58. 58.
    Bolund B, Bernhoff H, Leijon M (2007) Flywheel energy and power storage systems. Renew Sustain Energy Rev 11(2):235. doi: 10.1016/j.rser.2005.01.004 Google Scholar
  59. 59.
    Van Mierlo J, Maggetto G (2004) Innovative iteration algorithm for a vehicle simulation program. IEEE Trans Veh Technol 53(2):401. doi: 10.1109/TVT.2004.823534 Google Scholar
  60. 60.
    Solero L, Lidozzi A, Serrao V, Martellucci L, Rossi E (2011) Ultracapacitors for fuel saving in small size hybrid vehicles. J Power Sour 196(1):587. doi: 10.1016/j.jpowsour.2009.07.041
  61. 61.
    Doucette RT (2010) The oxford vehicle model manual: a tool for modeling and simulating the powertrains of electric and hybrid electric vehicles. Energy and Power Group, Department of Engineering Science, University of Oxford, Oxford.
  62. 62.
    Doucette RT, McCulloch MD (2011) A comparison of high-speed flywheels, batteries, and ultracapacitors on the bases of cost and fuel economy as the energy storage system in a fuel cell based hybrid electric vehicle. J Power Sour 196(3):1163. doi: 10.1016/j.jpowsour.2010.08.100
  63. 63.
    Doucette RT, McCulloch MD (2011) Modeling the CO2 emissions from battery electric vehicles given the power generation mixes of different countries. Energy Policy 39(2):803. doi: 10.1016/j.enpol.2010.10.054
  64. 64.
    Doucette RT, McCulloch MD (2011) Modeling the prospects of plug-in hybrid electric vehicles to reduce CO2 emissions. Appl Energy 88(7):2315. doi: 10.1016/j.apenergy.2011.01.045
  65. 65.
    Chamon M, Mauro P, Okawa Y (2008) Mass car ownership in the emerging market giants. Econ Policy 23(54):243. doi: 10.1111/j.1468-0327.2008.00201.x Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Malcolm D. McCulloch
    • 1
  • Justin D. K. Bishop
    • 2
  • Reed T. Doucette
    • 1
  1. 1.Department of Engineering Science, Energy and Power GroupUniversity of OxfordOxfordUK
  2. 2.Department of Engineering Science, Institute for Carbon and Energy Reduction in TransportOxford Martin School, c/o University of OxfordOxfordUK

Personalised recommendations