Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Errata to: D. R. Greatrix, Powered Flight, DOI 10.1007/978-1-4471-2485-6

  1. 1.

    There is a possibility of an extra page 333 and 334 in some copies of the book. Please ignore.

  2. 2.

    The original version of Chap. 6, Fig. 6.62 contained incorrect caption. The corrected caption is as follows: Schematic diagrams illustrating the nominal forward-thrust setup for the rear of a jet engine in flight (at left), and at right, the temporary deployment of external buckets at the rear of the engine in order to provide a reverse thrust capability for the airplane as it decelerates in a landing ground roll.

  3. 3.

    In Chap. 9, Eq. 9.29 should appear as

    $$ \frac{{A_{t} }}{{A_{e} }} = \frac{{Ma_{e} }}{{Ma_{t} }}\left[\frac{{2 + (\gamma - 1)Ma_{t}^{2} }}{{2 + (\gamma - 1)Ma_{e}^{2}}}\right]^{{\frac{\gamma + 1}{2(\gamma - 1)}}} $$
    (9.29)
  4. 4.

    Bottom of p. 294, should appear as:

    $$ \ldots ,{\text{air density}}\,\varDelta = {\text{ f}}\left( h \right)\, \ldots $$
  5. 5.

    In Chap. 10, Eq. (10.10) should appear as:

    $$ r_{e} = \frac{{h\left( {T_{F} - T_{S} } \right)}}{{\rho_{s} \left[ {C_{s} \left( {T_{S} - T_{i} } \right) - \Delta H_{s} } \right]}} $$
    (10.10)
  6. 6.

    Middle of p. 220, solution for Prob. 6.3, p 05 value is shown as 193 kPa in the solution of the equation for finding p 06, but that value should be 183 kPa, as per Prob. 6.2. Note that the value for p 06 is correct as shown (172 kPa).

  7. 7.

    Near the bottom of p. 229 for the sample solution of Prob. 6.9, one sees the solution for the exiting mass flow, which should be shown as follows:

    $$ \dot{m}_{e} = \rho_{e} V_{e} A_{e} = 44.4\,{\text{kg/s}}$$
  8. 8.

    Near the bottom of p. 491 (Appendix III), should be as follows:

    $$ 1 \, {{\text{kg}} \mathord{\left/ {\vphantom {{\text{kg}} {{\text{m}}^{3} }}} \right. \kern-0pt} {{\text{m}}^{3} }} = \cdots = 3.61\,{\text{H}}\,10^{ - 5} {{\text{lbm}} \mathord{\left/ {\vphantom {{\text{lbm}} {{\text{in}}^{3} }}} \right. \kern-0pt} {{\text{in}}^{3} }} $$
  9. 9.

    Near the bottom of p. 432 (solution, Prob. 12.4), in the equation for flame zone thickness * o , the wrong value was used for solid specific heat C s (should be 2000, not 1100). As a result, the actual end solution for total burning rate r b should be 0.00742 m/s (not 0.019 m/s) for that first iteration using the initial guess for r b as 0.019 m/s. By repeated guesses for different values for r b , one can eventually show that the converged value for r b is 0.0173 m/s, and the axial mass-flux (base) burning rate at 500 g is 0.00703 m/s (as compared to 0.01165 m/s at 0 g).

In addition to the above corrections below text is revised content of Chap. 12:

Book Practice Problem Solution

12.4 (revised June 9, 2013)

Looking at a hybrid rocket fuel’s burning rate under mass flux and acceleration. Worst case is that there is sufficient oxidizer available for complete r b augmentation due to a n .

We will need to iterate between the two mechanisms of burning, given that each mechanism is dependent on the other mechanism as a base burning rate.

Effect of mass flux G:

From Prob. 12.3 (b),

$$ h^{*} = \frac{k}{d}\text{Re}_{d} {\text{Pr}}^{1/3} \frac{f}{8} = \frac{0.205}{0.08}4.926 \times 10^{6} \left( {0.73^{0.333} } \right)\frac{0.0118}{8} = 16766\,{{\text{W}} \mathord{\left/ {\vphantom {{\text{W}} {{\text{m}}^{ 2} }}} \right. \kern-0pt} {{\text{m}}^{ 2} }} \cong {\text{K}},{\text{ remains constant}}. $$

Begin iteration, guess r b = 1.63 × 0.01165 m/s = 0.019 m/s:

$$ h = \frac{{\rho_{s} r_{b} C_{p} }}{{\exp \left( {\frac{{\rho_{s} r_{b} C_{p} }}{h^{*}}} \right) - 1}} = \frac{{1100\left( {2083} \right)r_{b} }}{{\exp \left( {\frac{{1100(2083)r_{b} }}{16766}} \right) - 1}} = \frac{{2.291 \times 10^{6} r_{b} }}{{\exp \left( {136.66r_{b} } \right) - 1}} = { 35}06\,{{\text{W}} \mathord{\left/ {\vphantom {{\text{W}} {{\text{m}}^{ 2} }}} \right. \kern-0pt} {{\text{m}}^{ 2} }} \cong {\text{K}} $$
$$ \begin{aligned} r_{b} &= r_{{o,a_{n}}} + \frac{{h(T_{F} - T_{S} )}}{{\rho_{s} C_{s} (T_{S} - T_{i} ) - \rho_{s} \Delta H_{S} }} = r_{{o,a_{n} }} + \frac{h(2725 - 800)}{1100(2000)(800 - 288) - 0} = r_{{o,a_{n} }} + 1.709 \times 10^{ - 6} h\\ & = r_{{o,a_{n} }} + 0.00 6 = \left( {0.0 1 9 - 0.00 6} \right) + 0.006 = 0.0 1 3 + 0.00 6 = 0.019\,{{\text{m}}/{\text{s}}}, {\text{ tentatively.}} \end{aligned}$$

Need to check via remaining equations, to bring convergence to the solution. For now, r o,G = 0.006 m/s.

Effect of normal acceleration a n :

$$ \begin{aligned} \delta_{0} & = \frac{k}{{\rho_{s} r_{o} C_{p} }}\ell n\left[ {1 + \frac{{C_{p} (T_{F} - T_{S} )}}{{C_{S} (T_{S} - T_{i} ) - \Delta H_{S} }}} \right] = \frac{0.205}{{1100\left( {r_{o,G} } \right)2083}}\ell n\left[ {1 + \frac{{2083\left( {1925} \right)}}{{2000\left( {512} \right) - 0}}} \right] = \frac{{1.4255 \times 10^{ - 7} }}{{r_{o,G} }}\\ & = { 2}. 3 7 6\times 10^{ - 5}\,{\text{m}}\\ G_{a} & = \frac{{a_{n} p}}{{r_{b} }}\frac{{\delta_{o} }}{{RT_{F} }}\frac{{r_{o} }}{{r_{b} }} = \frac{{ - 4905\left( {8.0 \times 10^{6} } \right)}}{{r_{b} }}\frac{{1.4255 \times 10^{ - 7} }}{{361.5\left( {2725} \right)r_{o,G} }}\frac{{r_{o,G} }}{{r_{b} }} = - \frac{{5.678 \times 10^{ - 3} }}{{r_{b}^{2} }} = - 1 5. 7 3\, {{\text{kg}}/{\text{s}}}\cong {\text{m}}^{ 2}\\ r_{b} & = \frac{{C_{p} \left( {T_{F} - T_{S} } \right)}}{{C_{S} \left( {T_{S} - T_{i} } \right) - \Delta H_{S} }} \cdot \frac{{r_{b} + {{G_{a} } / {\rho_{s} }}}}{{\exp \left[ {\frac{{C_{p} \delta_{o} \rho_{s} }}{k}\left( {{{r_{b} + G_{a} } / {\rho_{s} }}} \right)} \right] - 1}}\\ & = 3.92 \cdot \frac{{r_{b} - \frac{{5.162 \times 10^{ - 6} }}{{r_{b}^{2} }}}}{{\exp \left[ {\frac{{2083\left( {1.4255 \times 10^{ - 7} } \right)1100}}{{0.205r_{o,G} }}\left( {r_{b} - \frac{{5.162 \times 10^{ - 6} }}{{r_{b}^{2} }}} \right)} \right] - 1}}\\ & = 3.92 \cdot \frac{{r_{b} - \frac{{5.162 \times 10^{ - 6} }}{{r_{b}^{2} }}}}{{\exp \left[ {\frac{1.5934}{{r_{o,G} }}\left( {r_{b} - \frac{{5.162 \times 10^{ - 6} }}{{r_{b}^{2} }}} \right)} \right] - 1}} \cdot 0.00 7 4 2\,{{\text{m}} / {\text{s}}} ,\end{aligned}$$

so guessed incorrectly on r b .

To potentially speed things up a bit, one can note that there is a lower limit value for r b at a given a n , as prescribed by the above equation:

$$ r_{b} - \frac{{5.162 \times 10^{ - 6} }}{{r_{b}^{2} }} = 0 $$

or in other words,

$$ r_{b,\lim } \approx \left\{ {\frac{{a_{n} p}}{{RT_{F} }}\frac{k}{{\rho_{s}^{2} \cdot C_{p} }}\ell n\left[ {1 + \frac{{C_{p} \left( {T_{F} - T_{S} } \right)}}{{C_{s} \left( {T_{S} - T_{i} } \right) - \Delta H_{s} }}} \right]} \right\}^{1/3} $$

Depending on the influence of other factors, the overall r b may be at or above r b,lim for a given value of a n . In this case, it turns out that r b is at the r b,lim bound for 500 g, hence equal to 0.0173 m/s. The base burn rate (i.e., due to axial mass flux alone) for the 500 g case is 0.00703 m/s.

Thus, \( \frac{{r_{b} }}{{r_{o} }} = \frac{0.0173}{0.00703} = 2.46 \) as augmentation of burning rate due to radial vibration of 500 g.

Note how much mass-flux base burning was brought down by the vibration… from 0.01165 m/s down to 0.00703 m/s (about a 40 % decrease). Referencing the pre-vibration state, the augmentation ratio would in that case be 0.0173/0.01165 = 1.49.