Advertisement

Periprosthetic Infection Issues with Osseointegrated (OI) Implant Technology in Amputees

  • Catherine Loc-Carrillo
  • Alec C. Runyon
  • James Peter BeckEmail author
Chapter

Abstract

The emerging technology of percutaneous osseointegrated skeletal attachment of artificial limbs, for the amputee population, presents new research and clinical challenges for preventing and treating infections at the implant/skin interface and the deep bone/implant attachment. The goal of this chapter is to review the current literature and to identify the challenges and possible solutions to these challenges that would ultimately allow wider introduction of this technology, particularly for the benefit of patients with multiple short stump amputations not ­amenable to current socket prosthetic docking systems.

Keywords

Amputees External osseointegrated implant Complications 

References

  1. 1.
    Levy SW. Skin problems in the amputee. In: Smith DG, Michael JW, Bowker JH, editors. Atlas of amputations and limb deficiencies surgical, prosthetic, and rehabilitation principles. 3rd ed. Rosemont: American Academy of Orthopaedic Surgeons; 2004. p. 701–10.Google Scholar
  2. 2.
    Frossard L, Hagberg K, Haggstrom E, Gow DL, Branemark R, Pearcy M. Functional outcome of transfemoral amputees fitted with an osseointegrated fixation: temporal gait characteristics. J Prosthet Orthot. 2010;22(1):11–20.CrossRefGoogle Scholar
  3. 3.
    Hagberg K, Haggstrom E, Uden M, Branemark R. Socket versus bone-anchored trans-femoral prostheses: hip range of motion and sitting comfort. Prosthet Orthot Int. 2005;29(2):153–63.PubMedCrossRefGoogle Scholar
  4. 4.
    Hagberg K, Haggstrom E, Jonsson S, Rydevik B, Branemark R. Osseoperception and osseointegrated prosthetic limbs. In: Gallagher P, Desmond D, MacLachlan M, editors. Psychoprosthetics. London: Springer; 2008. p. 131–40. doi: 10.1007/978-1-84628-980-4_10.CrossRefGoogle Scholar
  5. 5.
    Hagberg K, Branemark R. One hundred patients treated with osseointegrated transfemoral amputation prostheses – rehabilitation perspective. J Rehabil Res Dev. 2009;46(3):331–44.PubMedCrossRefGoogle Scholar
  6. 6.
    Brånemark R, Brånemark PI, Rydevik B, Myers RR. Osseointegration in skeletal reconstruction and rehabilitation: a review. J Rehabil Res Dev. 2001;38(2):175–81.PubMedGoogle Scholar
  7. 7.
    Aschoff HH, Kennon RE, Keggi JM, Rubin LE. Transcutaneous, distal femoral, intramedullary attachment for above-the-knee prostheses: an endo-exo device. J Bone Joint Surg Am. 2010;92 Suppl 2:180–6. doi: 10.2106/JBJS.J.00806. PII:92/Supplement_2/180.PubMedCrossRefGoogle Scholar
  8. 8.
    Tillander J, Hagberg K, Hagberg L, Branemark R. Osseointegrated titanium implants for limb prostheses attachments: infectious complications. Clin Orthop Relat Res. 2010;468(10):2781–8. doi: 10.1007/s11999-010-1370-0.PubMedCrossRefGoogle Scholar
  9. 9.
    Arciola CR, An YH, Campoccia D, Donati ME, Montanaro L. Etiology of implant orthopedic infections: a survey on 1027 clinical isolates. Int J Artif Organs. 2005;28(11):1091–100.PubMedGoogle Scholar
  10. 10.
    Pulido L, Ghanem E, Joshi A, Purtill JJ, Parvizi J. Periprosthetic joint infection: the incidence, timing, and predisposing factors. Clin Orthop Relat Res. 2008;466(7):1710–5. doi: 10.1007/s11999-008-0209-410.1016/j.jbiomech.2011.08.020.PubMedCrossRefGoogle Scholar
  11. 11.
    Clausen A, Aschoff H-H. Microbiology of the endo- exo-femur prosthesis (EEFP) experience. In: First International Endo-Exo Meeting, Lubeck. May 2009.Google Scholar
  12. 12.
    Ellington JK, Harris M, Hudson MC, Vishin S, Webb LX, Sherertz R. Intracellular Staphylococcus aureus and antibiotic resistance: implications for treatment of staphylococcal osteomyelitis. J Orthop Res. 2006;24(1):87–93. doi: 10.1002/jor.20003.PubMedCrossRefGoogle Scholar
  13. 13.
    Wright JA, Nair SP. Interaction of staphylococci with bone. Int J Med Microbiol. 2010;300(2–3):193–204. doi: 10.1016/j.ijmm.2009.10.003. PII:S1438-4221(09)00121-0.PubMedCrossRefGoogle Scholar
  14. 14.
    Gristina AG, Costerton JW. Bacterial adherence to biomaterials and tissue. The significance of its role in clinical sepsis. J Bone Joint Surg Am. 1985;67(2):264–73.PubMedGoogle Scholar
  15. 15.
    Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15(2):167–93.PubMedCrossRefGoogle Scholar
  16. 16.
    Costerton JW. Biofilm theory can guide the treatment of device-related orthopaedic infections. Clin Orthop Relat Res. 2005;437:7–11.PubMedCrossRefGoogle Scholar
  17. 17.
    Fitzpatrick F, Humphreys H, O’Gara JP. The genetics of staphylococcal biofilm formation – will a greater understanding of pathogenesis lead to better management of device-related infection? Clin Microbiol Infect. 2005;11(12):967–73. doi: 10.1111/j.1469-0691.2005.01274.x. PII:CLM1274.PubMedCrossRefGoogle Scholar
  18. 18.
    Oliver JD. The viable but nonculturable state in bacteria. J Microbiol. 2005;43:93–100. PII:2134.PubMedGoogle Scholar
  19. 19.
    Lewis K. Persister cells. Annu Rev Microbiol. 2010;64:357–72. doi: 10.1146/annurev.micro.112408.134306.PubMedCrossRefGoogle Scholar
  20. 20.
    Mittal Y, Fehring TK, Hanssen A, Marculescu C, Odum SM, Osmon D. Two-stage reimplantation for periprosthetic knee infection involving resistant organisms. J Bone Joint Surg Am. 2007;89(6):1227–31.PubMedCrossRefGoogle Scholar
  21. 21.
    Diwanji SR, Kong IK, Park YH, Cho SG, Song EK, Yoon TR. Two-stage reconstruction of infected hip joints. J Arthroplasty. 2008;23(5):656–61. doi: 10.1016/j.arth.2007.06.007. PII:S0883-5403(07)00360-9.PubMedCrossRefGoogle Scholar
  22. 22.
    Kim HJ, Fernandez JW, Akbarshahi M, Walter JP, Fregly BJ, Pandy MG. Evaluation of predicted knee-joint muscle forces during gait using an instrumented knee implant. J Orthop Res. 2009;27(10):1326–31. doi: 10.1002/jor.20876.PubMedCrossRefGoogle Scholar
  23. 23.
    Pendegrass CJ, Goodship AE, Price JS, Blunn GW. Nature’s answer to breaching the skin barrier: an innovative development for amputees. J Anat. 2006;209(1):59–67.PubMedCrossRefGoogle Scholar
  24. 24.
    Kang NV, Pendegrass C, Marks L, Blunn G. Osseocutaneous integration of an intraosseous transcutaneous amputation prosthesis implant used for reconstruction of a transhumeral amputee: case report. J Hand Surg Am. 2010;35(7):1130–4. doi: 10.1016/j.jhsa.2010.03.037. PII:S0363-5023(10)00384-9.PubMedCrossRefGoogle Scholar
  25. 25.
    Beck JP, Bloebaum RD, Jeyapalina S, Bachus KN. A single-stage ovine amputation model for developing a safe osseointegrated implant system. In: Proceedings of the 27th Army Science Conference, Orlando. 30 November 2010. p. KO-03, 01–08.Google Scholar
  26. 26.
    Bloebaum RD, Mihalopoulus NL, Jensen JW, Dorr LD. Postmortem analysis of bone growth into porous-coated acetabular components. J Bone Joint Surg Am. 1997;79-A(7):1013–22.Google Scholar
  27. 27.
    Bloebaum RD, Bachus KN, Jensen JW, Scott DF, Hofmann AA. Porous-coated metal-backed patellar components in total knee replacement. J Bone Joint Surg Am. 1998;80-A(4):518–28.Google Scholar
  28. 28.
    Bloebaum RD, Beck JP, Olsen R, Norlund L, Bachus KN. Development of a single stage surgical model for percutaneous osseointegrated implants for amputees. In: 55th Annual Meeting of the Orthopaedic Research Society. Trans. Orthopaed. Res. Soc., Las Vegas. 22–25 February 2009. p. 2255.Google Scholar
  29. 29.
    Shelton TJ, Beck JP, Bloebaum RD, Bachus KN. Percutaneous osseointegrated prostheses for amputees: Limb compensation in a 12-month ovine model. J Biomech. 2011;44(15):2601–6. PII:S0021-9290(11)00580-X.PubMedCrossRefGoogle Scholar
  30. 30.
    Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449(7164):804–10. doi: 10.1038/nature06244. PII:nature06244.PubMedCrossRefGoogle Scholar
  31. 31.
    Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011;9(4):244–53. doi: 10.1038/nrmicro2537. PII:nrmicro2537.PubMedCrossRefGoogle Scholar
  32. 32.
    Gao Z, Tseng CH, Pei Z, Blaser MJ. Molecular analysis of human forearm superficial skin bacterial biota. Proc Natl Acad Sci USA. 2007;104(8):2927–32.PubMedCrossRefGoogle Scholar
  33. 33.
    Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, Bouffard GG, Blakesley RW, Murray PR, Green ED, Turner ML, Segre JA. Topographical and temporal diversity of the human skin microbiome. Science. 2009;324(5931):1190–2. doi: 10.1126/science.1171700. PII:324/5931/1190.PubMedCrossRefGoogle Scholar
  34. 34.
    Cogen AL, Nizet V, Gallo RL. Skin microbiota: a source of disease or defence? Br J Dermatol. 2008;158(3):442–55. doi: 10.1111/j.1365-2133.2008.08437.x. PII:BJD8437.PubMedCrossRefGoogle Scholar
  35. 35.
    Galanakis N, Giamarellou H, Moussas T, Dounis E. Chronic osteomyelitis caused by multi-resistant gram-negative bacteria: evaluation of treatment with newer quinolones after prolonged follow-up. J Antimicrob Chemother. 1997;39(2):241–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Meyers BR, Berson BL, Gilbert M, Hirschman SZ. Clinical patterns of osteomyelitis due to Gram-negative bacteria. Arch Intern Med. 1973;131(2):228–33.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  • Catherine Loc-Carrillo
    • 1
  • Alec C. Runyon
    • 2
  • James Peter Beck
    • 3
    • 4
    Email author
  1. 1.Department of OrthopedicsVA SLC Health Care SystemSalt Lake CityUSA
  2. 2.University of Nevada School of MedicineRenoUSA
  3. 3.Department of OrthopaedicsThe University of UtahSalt Lake CityUSA
  4. 4.George E. Wahlen Department of Veterans Affairs Medical CenterVA Salt Lake City Health Care SystemSalt Lake CityUSA

Personalised recommendations