Advertisement

Pathogenesis of Prosthetic Joint Infections

  • Rihard TrebšeEmail author
  • Jurij Štalc
Chapter

Abstract

Every wound is contaminated, but not all wounds end with a ­prosthetic joint infection (PJI). The pathogenic process involves bacterial ­adhesion steps that are fundamental in the early stage of PJI development and the consecutive biofilm formation. Biofilm development is an essential step in establishment of a chronic PJI. Due to its physical and chemical proprieties, it serves as a basic structure that protects bacteria from environmental influences like host immune defenses and antibiotics. To understand the diagnostic ­principles and treatment modes, it is imperative to understand the basics of the pathogenesis of PJI.

Keywords

Pathogenesis Interactions Biofilm Bacteria Host 

References

  1. 1.
    An HY, Friedman R. Concise review of mechanisms of bacterial adhesion to biomaterial ­surface. J Biomed Mater Res. 1997;43:338–48.CrossRefGoogle Scholar
  2. 2.
    Ceri H, Olson ME, Stremick C. The Calgary biofilm device: new technology for rapid determination of antibiotic susceptibility of bacterial biofilms. J Clin Microbiol. 1999;37:1771–6.PubMedGoogle Scholar
  3. 3.
    Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284:1318–22.PubMedCrossRefGoogle Scholar
  4. 4.
    Darouiche RO. Device-associated infections: a macroproblem that starts with microadherence. Clin Infect Dis. 2001;33:1567–72.PubMedCrossRefGoogle Scholar
  5. 5.
    Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis. 2002;8:881–90.PubMedCrossRefGoogle Scholar
  6. 6.
    Ehlers LJ, Bouwer EJ. RP4 plasmid transfer among species of Pseudomonas in a biofilm reactor. Water Sci Technol. 1999;7:163–71.Google Scholar
  7. 7.
    Gray ED, Peters G. Effect of extracellular slime substance from Staphylococcus epidermidis on the human cellular immune response. Lancet. 1984;1:365–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Gristina AG, Hobgood CD, Webb LX. Adhesive colonisation of biomaterials and antibiotic resistance. Biomaterials. 1987;8:423–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Gristina AG, Jennings RA, Naylor PT, Myrvik QN, Webb LX. Comparative in vitro antibiotic resistance of surface-colonizing coagulase-negative staphylococci. Antimicrob Agents Chemother. 1989;33:813–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Gristina AG, Oga M, Webb LX, Hobgood CD. Adherent bacterial colonization in the pathogenesis of osteomyelitis. Science. 1985;228:990–3.PubMedCrossRefGoogle Scholar
  11. 11.
    Hacker J. Role of fimbrial adhesin in the pathogenesis of Escherichia coli infections. Can J Microbiol. 1992;38:720–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Hasty DL, Ofek I, Courtney HS, Doyle RJ. Multiple adhesins for streptococci. Infect Immunol. 1992;60:2147–52.Google Scholar
  13. 13.
    Krekeler C, Ziehr H, Klein J. Physical methods for characterization of microbial cell surfaces. Experientia. 1989;45:1047–54.PubMedCrossRefGoogle Scholar
  14. 14.
    Marshall KC. Mechanisms of bacterial adhesions at solid water interfaces. In: Savage DC, Fletcher M, editors. Bacterial adhesion. Mechanisms and physiological significance. New York: Plenum Press; 1985.Google Scholar
  15. 15.
    Nylor PT, Jennings R, Webb LX, Gristina AG. Antibiotic sensitivity of biomaterial adherent Staphylococcus epidermidis and Staphylococcus aureus. Trans Orthop Res Soc. 1989;14:108.Google Scholar
  16. 16.
    Nylor PT, Myrvik QN, Gristina AG. Antibiotic resistance of coagulase-negative and coagulase positive staphylococci. Clin Orthop Relat Res. 1990;261:126–33.Google Scholar
  17. 17.
    Pascual A, de Arellano ER, Martinez LM, Parea EJ. Effect of polyurethane catheters and bacterial biofilm on the in-vitro activity of antimicrobials agents Staphylococcus epidermidis. J Hosp Infect. 1993;24:211–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Patti JM, Allen BL, McGavin MJ, Hook M. MSCRAMM-mediated adherence of microorganisms to host tissues. Annu Rev Microbiol. 1994;48:585–617.PubMedCrossRefGoogle Scholar
  19. 19.
    Ramage G, Tunney MM, Patrick S, Gorman SP, Nixon JR. Formation of Propionibacterium acnes biofilms on orthopaedic biomaterials and their susceptibility to antimicrobials. Biomaterials. 2003;24:3221–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet. 2001;358:135–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Steyer A. Interakcije med mikrobi. Med Razgl. 2004;43:37–44.Google Scholar
  22. 22.
    Sutherland IW. Microbial exopolysaccharides. Their role in microbial adhesion in aqueous systems. CRC Crit Rev Microbiol. 1983;10:173–201.CrossRefGoogle Scholar
  23. 23.
    Tenover FC, Schaberg DR. Molecular biology of resistance. In: Bennett JV, Brachman PS, editors. Hospital infections. 4th ed. Philadelphia: Lippincott-Raven; 1998.Google Scholar
  24. 24.
    Vuong C, Gerke C, Somerville GA, Fischer ER, Otto M. Quorum-sensing control of biofilm factors in Staphylococcus epidermidis. J Infect Dis. 2003;188:706–18.PubMedCrossRefGoogle Scholar
  25. 25.
    Zimmerli W, Waldvogel FA, Vaudaux P, Nydegger UE. Pathogenesis of foreign body infection: description and characteristics of an animal model. J Infect Dis. 1982;146:487–97.PubMedCrossRefGoogle Scholar
  26. 26.
    Zimmerli W, Zak O, Vosbeck K. Experimental hematogenous infection of subcutaneously implanted foreign bodies. Scand J Infect Dis. 1985;17:303–10.PubMedGoogle Scholar
  27. 27.
    Zobell CE. The effect of solid surfaces upon bacterial activity. J Bacteriol. 1943;46:39–56.PubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  1. 1.Department for Bone infections and Adult reconstructionsOrthopaedic Hospital ValdoltraAnkaranSlovenia

Personalised recommendations