Absolute Glaucoma

  • Fiona Roberts
  • Chee Koon Thum


Glaucoma is a generic term used to describe diseases in which the intraocular pressure is at a level sufficient to cause damage to the tissues within an individual eye, resulting in “glaucomatous optic neuropathy”. Around 30% of the globes received in the laboratory will have been enucleated due to failed treatment for glaucoma. Glaucoma may be classified as primary open angle, primary acute angle closure, congenital glaucoma and secondary glaucoma where the chamber angle may be closed due to a fibrovascular membrane or where the chamber angle is open but the trabecular meshwork is blocked (e.g. with blood or tumour cells). A rapid rise in intraocular pressure will result in acute ischaemic damage to ocular tissues and may cause infarction in the optic nerve. A chronic sustained raised intraocular pressure leads to atrophy of intraocular tissues with loss of the ganglion cell layer of the retina and the prelaminar region of the optic nerve with bowing of the lamina cribrosa posteriorly. The changes of surgical intervention will also usually be evident in enucleation specimens.


Anterior Chamber Trabecular Meshwork Central Retinal Vein Occlusion Outflow System Normal Tension Glaucoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Shiose Y. Intraocular pressure: new perspectives. Surv Ophthalmol. 1990;34:413–5.PubMedGoogle Scholar
  2. 2.
    Caprioli J. The ciliary epithelia and aqueous humour. In: Hart WM, editor. Adler’s physiology of the eye. St. Louis/Washington/Toronto: CV Mosby; 1992. p. 228–47.Google Scholar
  3. 3.
    Iwamoto Y, Tamura M. Immunocytochemical study of intermediate filaments in cultured human trabecular cells. Invest Ophthalmol Vis Sci. 1988;29:244–50.PubMedGoogle Scholar
  4. 4.
    Yue BYTJ. The extracellular matrix and its modulation in the trabecular meshwork. Surv Ophthalmol. 1996;40:379–90.PubMedGoogle Scholar
  5. 5.
    Toris CB, Yablonski ME, Wang Y-L, Camras CB. Aqueous humour dynamics in the aging human eye. Am J Ophthalmol. 1999;127:407–12.PubMedGoogle Scholar
  6. 6.
    Epstein DL, Rohen JW. Morphology of the trabecular meshwork and inner wall endothelium after cationized ferritin perfusion in the monkey eye. Invest Ophthalmol Vis Sci. 1991;32:160–71.PubMedGoogle Scholar
  7. 7.
    Ainsworth JR, Lee WR. Effects of age and high pressure fixation on the lining endothelium of Schlemm’s canal. Invest Ophthalmol Vis Sci. 1990;31:745–50.PubMedGoogle Scholar
  8. 8.
    Wilson MR. The myth of “21”. J Glaucoma. 1997;6:75–7.PubMedGoogle Scholar
  9. 9.
    Collaborative Normal-Tension Glaucoma Study Group. Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Am J Ophthalmol. 1998;126:487–97.Google Scholar
  10. 10.
    Quigley HA, Friedman DS, Congdon NG. Possible mechanisms of primary angle-closure and malignant glaucoma. J Glaucoma. 2003;12:167–80.PubMedGoogle Scholar
  11. 11.
    Lichter PR. Genetic clues to glaucoma’s secrets. Am J Ophthalmol. 1994;117:706–17.PubMedGoogle Scholar
  12. 12.
    Johnson AT, Richards JE, Boehnke M, Stringham HM, Herman SB, Wong DJ, Lichter PR, et al. Clinical phenotype of juvenile-onset glaucoma linked to chromosome 1q. Ophthalmology. 1996;103:808–14.PubMedGoogle Scholar
  13. 13.
    Wang X, Johnson DH. mRNA in situ hybridization of TIGR/MYOC in human trabecular meshwork cells. Invest Ophthalmol Vis Sci. 2000;41:1724–9.PubMedGoogle Scholar
  14. 14.
    Fingert JH. Primary open-angle glaucoma genes. Eye (Lond). 2011;25:587–95.Google Scholar
  15. 15.
    Sarfarazi M, Child A, Stoilova D, Brice G, Desai T, Trifan OC, et al. Localization of the fourth locus (GLC1E) for adult-onset primary open-angle glaucoma to the 10p15-p14 region. Am J Hum Genet. 1998;62:641–52.PubMedGoogle Scholar
  16. 16.
    Rezaie T, Child A, Hitchings R, Brice G, Miller L, Coca-Prados M, et al. Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science. 2002;295:1077–9.PubMedGoogle Scholar
  17. 17.
    Fingert JH, Robin AL, Stone JL, Roos B, Davis LK, Scheetz TA, et al. Copy number variations on chromosome 12q14 patients with normal tension glaucoma. Hum Mol Genet. 2011;20(12):2482–94.PubMedGoogle Scholar
  18. 18.
    Monemi S, Spaeth G, Dasilva A, Popinchalk S, Ilitchev E, Liebmann J, et al. Identification of a novel adult-onset primary open-angle glaucoma (POAG) gene on 5q22.1. Hum Mol Genet. 2005;14:725–33.PubMedGoogle Scholar
  19. 19.
    Lee WR. The pathology of the outflow system in primary and secondary glaucoma. Eye. 1995;9:1–23.PubMedGoogle Scholar
  20. 20.
    Toris CB. Pharmacotherapies for glaucoma. Curr Mol Med. 2010;10(9):824–40.PubMedGoogle Scholar
  21. 21.
    Civan MM. In: Civan MM, editor. Formation of the aqueous humor: Transport component and their integration. The eye’s aqueous humor, vol. 62. 2nd ed. San Diego: Elsevier, Inc.; 2008; p. 1–45.Google Scholar
  22. 22.
    Alvarado JA, Murphy CG. Outflow obstruction in pigmentary and primary open angle glaucoma. Arch Ophthalmol. 1992;110:1769–78.PubMedGoogle Scholar
  23. 23.
    Tian B, Geiger B, Epstein DL, Kaufman PL. Cytoskeletal involvement in the regulation of aqueous humor outflow. Invest Ophthalmol Vis Sci. 2000;41:619–23.PubMedGoogle Scholar
  24. 24.
    Izzotti A, Bagnis A, Saccà SC. The role of oxidative stress in glaucoma. Mutat Res. 2006;612(2):105–14.PubMedGoogle Scholar
  25. 25.
    Saccà SC, Izzotti A, Rossi P, Traverso C. Glaucomatous outflow pathway and oxidative stress. Exp Eye Res. 2007;84:389–99.PubMedGoogle Scholar
  26. 26.
    De La Paz MA, Epstein DL. Effect of age on superoxide dismutase activity of human trabecular meshwork. Invest Ophthalmol Vis Sci. 1996;37:1849–53.Google Scholar
  27. 27.
    Tamm ER, Russell P, Johnson DH, Piatigorsky J. Human and monkey trabecular meshwork accumulate alpha B-crystallin in response to heat shock and oxidative stress. Invest Ophthalmol Vis Sci. 1996;37:2402–13.PubMedGoogle Scholar
  28. 28.
    Hogg P, Calthorpe M, Batterbury M, Grierson I. Aqueous humor stimulates the migration of human trabecular meshwork cells in vitro. Invest Ophthalmol Vis Sci. 2000;41:1091–8.PubMedGoogle Scholar
  29. 29.
    Alvarado J, Murphy C, Juster R. Trabecular meshwork cellularity in primary open angle glaucoma and nonglaucomatous normals. Ophthalmology. 1984;91:564–79.PubMedGoogle Scholar
  30. 30.
    Grierson I. What is open angle glaucoma? Eye. 1987;1:15–28.PubMedGoogle Scholar
  31. 31.
    Lutjen-Drecoll E, Rittig M, Rauterberg EA. Immunomicroscopical study of type VI collagen in the trabecular meshwork of normal and glaucomatous eyes. Exp Eye Res. 1989;48:139–47.PubMedGoogle Scholar
  32. 32.
    Sihota R, Goyal A, Kaur J, Gupta V, Nag TC. Scanning electron microscopy of the trabecular meshwork: understanding the pathogenesis of primary angle closure glaucoma. Indian J Ophthalmol. 2012;60(3):183–8.PubMedGoogle Scholar
  33. 33.
    Knepper PA, Fadel JR, Miller AM, Goossens W, Choi J, Nolan MJ, Whitmer S. Reconstitution of trabecular meshwork GAGs: influence of hyaluronic acid and chondroitin sulfate on flow rates. J Glaucoma. 2005;14:230–8.PubMedGoogle Scholar
  34. 34.
    Knepper PA, Goossens W, Hvizd M, Palmberg PF. Glycosaminoglycans of the human trabecular meshwork in primary open angle glaucoma. Invest Ophthalmol Vis Sci. 1996;37:1360–7.PubMedGoogle Scholar
  35. 35.
    Navajas EV, Martins JR, Melo Jr LA, Saraiva VS, Dietrich CP, Nader HB, Belfort Jr R. Concentration of hyaluronic acid in primary open-angle glaucoma aqueous humor. Exp Eye Res. 2005;80:853–7.PubMedGoogle Scholar
  36. 36.
    Babizhayev MA, Brodskaya MW. Immunohistochemical monitoring of the effect of a synthetic fibronectin-like peptide (Arg-Gly-Asp) on the age related changes in the isolated human corneoscleral tissue of glaucomatous eyes. Mech Ageing Dev. 1993;72:1–12.PubMedGoogle Scholar
  37. 37.
    Chapman SA, Bonshek RE, Stoddart RW, Jones CJ, Mackenzie KR, O’Donoghue E, et al. Glycoconjugates of the human trabecular meshwork: a lectin histochemical study. Histochem J. 1995;27:869–81.PubMedGoogle Scholar
  38. 38.
    Chapman SA, Bonshek RE, Stoddart RW, O’Donoghue E, Goodall K, McLeod D. Glycans of the trabecular meshwork in primary open angle glaucoma. Br J Ophthalmol. 1996;80:435–44.PubMedGoogle Scholar
  39. 39.
    Delaigue O, Arsene S, Arbeille B, Rossazza C. Localisation by immunogold of collagen VI, laminin and fibrillin in the trabecular meshwork of patients with glaucoma. J Fr Ophtalmol. 1999;22:61–6.PubMedGoogle Scholar
  40. 40.
    Rohen JW, Lutjen-Drecoll E, Flugel C, Meyer M, Grierson I. Ultrastructure of the trabecular meshwork in untreated cases of primary open angle glaucoma. Exp Eye Res. 1993;56:683–92.PubMedGoogle Scholar
  41. 41.
    Miller KM, Quigley HA. Comparison of optic disc features in low tension and typical open angle glaucoma. Ophthalmic Surg. 1987;18:882–9.PubMedGoogle Scholar
  42. 42.
    Mikelberg FS, Drance SM, Schulzer M, Wijsman K. Possible significance of cilioretinal arteries in low tension glaucoma. Can J Ophthalmol. 1990;25:298–300.PubMedGoogle Scholar
  43. 43.
    Broadway DC, Drance SM. Glaucoma and vasospasm. Br J Ophthalmol. 1998;82:862–70.PubMedGoogle Scholar
  44. 44.
    Kim YY, Jung HR. Clarifying the nomenclature for primary angle closure glaucoma. Surv Ophthalmol. 1997;42:125–36.PubMedGoogle Scholar
  45. 45.
    Lowe RF. Etiology of the anatomical basis for primary angle closure glaucoma. Br J Ophthalmol. 1970;54:161–9.PubMedGoogle Scholar
  46. 46.
    Tetsumoto K, Küchle M, Naumann GOH. Late histopathological findings of neodymium: YAG laser iridotomies in humans. Arch Ophthalmol. 1992;110:1119–23.PubMedGoogle Scholar
  47. 47.
    Tripathy BJ, Tripathy RC. Neural crest origin of human trabecular meshwork and its implications for the pathogenesis of glaucoma. Am J Ophthalmol. 1989;107:583–90.Google Scholar
  48. 48.
    Idrees F, Vaideanu D, Fraser SG, Sowden JC, Khaw PT. A review of anterior segment dysgeneses. Surv Ophthalmol. 2006;51:213–31.PubMedGoogle Scholar
  49. 49.
    Sowden JC. Molecular and developmental mechanisms of anterior segment dysgenesis. Eye. 2007;21:1310–8.PubMedGoogle Scholar
  50. 50.
    Perry LP, Jakobiec FA, Zakka FR, Walton DS. Newborn primary congenital glaucoma: histopathologic features of the anterior chamber filtration angle. J AAPOS. 2012;16(6):565–8.PubMedGoogle Scholar
  51. 51.
    Hollander DA, Sarfarazi M, Stoilov I, Wood IS, Fredrick DR, Alvarado JA. Genotype and phenotype correlations in congenital glaucoma. Trans Am Ophthalmol Soc. 2006;104:183–95.PubMedGoogle Scholar
  52. 52.
    Tawara A, Inomata H. Distribution and characterisation of sulfated proteoglycans in the trabecular tissue of goniodysgenetic glaucoma. Am J Ophthalmol. 1994;117:741–55.PubMedGoogle Scholar
  53. 53.
    Furuyoshi N, Furuyoshi M, Futa R, Gottanka J, Lutjen-Drecoll E. Ultrastructural changes in the trabecular meshwork of juvenile glaucoma. Ophthalmologica. 1997;211:140–6.PubMedGoogle Scholar
  54. 54.
    Katai N, Urakawa Y, Sato Y, Miyanaga K, Segawa K, Yoshimura N. CHARGE association with congenital glaucoma due to maldevelopment of the anterior chamber angle. Acta Ophthalmol Scand. 1997;75:322–4.PubMedGoogle Scholar
  55. 55.
    Tawara A, Inomata H. Developmental immaturity of the trabecular meshwork in juvenile glaucoma. Am J Ophthalmol. 1984;98:82–97.PubMedGoogle Scholar
  56. 56.
    Moorthy RS, Mermoud A, Baerveldt G, Minckler DS, Lee PP, Rao NA. Glaucoma associated with uveitis. Surv Ophthalmol. 1997;41:361–94.PubMedGoogle Scholar
  57. 57.
    Wax MB, Molinoff PB, Alvarado J, Polansky J. Characterisation of beta-adrenergic receptors in cultured human trabecular meshwork. Invest Ophthalmol Vis Sci. 1989;30:51–7.PubMedGoogle Scholar
  58. 58.
    Clark AF, de Wilson K, Kater AW, Allingham RR, McCartney MD. Dexamethasone-induced ocular hypertension in perfusion cultured human eyes. Invest Ophthalmol Vis Sci. 1995;36:478–89.PubMedGoogle Scholar
  59. 59.
    Lutjen-Drecoll E, May CA, Polansky JR, Johnson DH, Bloemendal H, Nguyen TD. Localization of the stress proteins alpha B-crystallin and trabecular inducible glucocorticoid response protein in normal and glaucomatous trabecular meshwork. Invest Ophthalmol Vis Sci. 1998;39:517–25.PubMedGoogle Scholar
  60. 60.
    Razeghinejad MR, Katz LJ. Steroid-induced iatrogenic glaucoma. Ophthalmic Res. 2012;47(2):66–80.PubMedGoogle Scholar
  61. 61.
    Ichhpujani P, Jindal A, Katz LJ. Silicone oil induced glaucoma: a review. Graefes Arch Clin Exp Ophthalmol. 2009;247:1585–93.PubMedGoogle Scholar
  62. 62.
    Richardson TM, Hutchison T, Grant WM. The outflow tract in pigmentary glaucoma. Arch Ophthalmol. 1977;95:1015–25.PubMedGoogle Scholar
  63. 63.
    Farrar SM, Shields BM. Current concepts in pigmentary glaucoma. Surv Ophthalmol. 1993;37:233–52.PubMedGoogle Scholar
  64. 64.
    Niyadurupola N, Broadway DC. Pigment dispersion syndrome and pigmentary glaucoma—a major review. Clin Experiment Ophthalmol. 2008;36:868–82.PubMedGoogle Scholar
  65. 65.
    Murphy CG, Johnson M, Alvarado JA. Juxtacanalicular tissue in pigmentary and primary open angle glaucoma. The hydrodynamic role of pigment and other constituents. Arch Ophthalmol. 1992;110:1779–85.PubMedGoogle Scholar
  66. 66.
    Gottanka J, Johnson DH, Grehn F, Lütjen-Drecoll E. Histologic findings in pigment dispersion syndrome and pigmentary glaucoma. J Glaucoma. 2006;15:142–51.PubMedGoogle Scholar
  67. 67.
    Fine BS, Yanoff M, Scheie HG. Pigmentary “glaucoma”: a histologic study. Trans Am Acad Ophthalmol Otolaryngol. 1974;78:314–25.Google Scholar
  68. 68.
    Kupfer C, Kuwabara T, Kaiser-Kupfer M. The histopathology of pigmentary dispersion syndrome with glaucoma. Am J Ophthalmol. 1975;80:857–62.PubMedGoogle Scholar
  69. 69.
    Kampik A, Green WR, Quigley HA, Pierce LH. Scanning and transmission electron microscopic studies of two cases of pigment dispersion syndrome. Am J Ophthalmol. 1981;91:573–87.PubMedGoogle Scholar
  70. 70.
    McMenamin PG, Lee WR. Ultrastructural pathology of melanomalytic glaucoma. Br J Ophthalmol. 1986;70:895–906.PubMedGoogle Scholar
  71. 71.
    Teichmann KD, Karcioglu ZA. Melanocytoma of the iris with rapidly developing secondary glaucoma. Surv Ophthalmol. 1995;40:136–44.PubMedGoogle Scholar
  72. 72.
    Fineman MS, Eagle RC, Shields JA, Shields CL, De Potter P. Melanomalytic glaucoma in eyes with necrotic iris melancytoma. Ophthalmology. 1998;105:492–6.PubMedGoogle Scholar
  73. 73.
    Rosenbaum JT, Samples JR, Seymour B, Langlois L, David L. Chemotactic activity of lens proteins and the pathogenesis of phacolytic glaucoma. Arch Ophthalmol. 1987;105:1582–4.PubMedGoogle Scholar
  74. 74.
    Streeten BW, Li ZY, Wallace RN, Eagle Jr RC, Keshgegian AA. Pseudoexfoliative fibrillopathy in visceral organs of a patient with pseudoexfoliation syndrome. Arch Ophthalmol. 1992;110(12):1757–62.PubMedGoogle Scholar
  75. 75.
    Schlötzer-Schrehardt U, von der Mark K, Sakai LY, Naumann GOH. Increased extracellular deposition of fibrillin-containing fibrils in pseudoexfoliation syndrome. Invest Ophthalmol Vis Sci. 1997;38:970–84.PubMedGoogle Scholar
  76. 76.
    Naumann GOH, Schlötzer-Schrehardt U, Küchle M. Pseudoexfoliation syndrome for the comprehensive ophthalmologist. Ophthalmology. 1998;105:951–68.PubMedGoogle Scholar
  77. 77.
    Rich R, Schlötzer-Schrehardt U. Exfoliation syndrome. Surv Ophthalmol. 2001;45:265–315.Google Scholar
  78. 78.
    Elhawy E, Kamthan G, Dong CQ, Danias J. Pseudoexfoliation syndrome, a systemic disorder with ocular manifestations. Hum Genomics. 2012;6:22.PubMedGoogle Scholar
  79. 79.
    Thorleifsson G, Magnusson KP, Sulem P, Walters GB, Gudbjartsson DF, Stefansson H, et al. Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Science. 2007;317(5843):1397–400.PubMedGoogle Scholar
  80. 80.
    Asano N, Schlotzer-Schrehardt U, Naumann GOH. A histopathologic study of iris changes in pseudoexfoliation syndrome. Ophthalmology. 1995;102:1279–90.PubMedGoogle Scholar
  81. 81.
    Schlotzer-Schrehardt U, Naumann GO. Ocular and systemic pseudoexfoliation syndrome. Am J Ophthalmol. 2006;141(5):921–37.PubMedGoogle Scholar
  82. 82.
    Li Z-Y, Streeten BW, Wallace RN. Association of elastin with pseudoexfoliative material: an immunoelectron microscopic study. Curr Eye Res. 1988;7:1163–72.PubMedGoogle Scholar
  83. 83.
    Konstas AG, Marshall GE, Lee WR. Immunogold localisation of laminin in normal and exfoliative iris. Br J Ophthalmol. 1990;74:450–7.PubMedGoogle Scholar
  84. 84.
    Ritch R, Schlotzer-Schrehardt U. Exfoliation (pseudoexfoliation) syndrome: toward a new understanding. Proceedings of the first international think tank. Acta Ophthalmol Scand. 2001;79(2):213–7.PubMedGoogle Scholar
  85. 85.
    Ovodenko B, Rostagno A, Neubert TA, Shetty V, Thomas S, Yang A, et al. Proteomic analysis of exfoliation deposits. Invest Ophthalmol Vis Sci. 2007;48(4):1447–57.PubMedGoogle Scholar
  86. 86.
    Schlötzer-Schrehardt U, Naumann GOH. Trabecular meshwork in Pseudoexfoliation syndrome with and without glaucoma. Invest Ophthalmol Vis Sci. 1995;36:1750–64.PubMedGoogle Scholar
  87. 87.
    Naumann GO, Schlötzer-Schrehardt U. Keratopathy in pseudoexfoliation syndrome as a cause of corneal endothelial decompensation: a clinicopathologic study. Ophthalmology. 2000;107:1111–24.PubMedGoogle Scholar
  88. 88.
    Matsuo T. Photoreceptor outer segments in aqueous humour: key to understanding a new syndrome. Surv Ophthalmol. 1994;39:211–33.PubMedGoogle Scholar
  89. 89.
    Netland PA, Sizuo M, Covington HI. Elevated intraocular pressure secondary to rhegmatogenous retinal detachment. Surv Ophthalmol. 1994;39:234–40.PubMedGoogle Scholar
  90. 90.
    Matsuo T, Muraoka N, Shiraga F, Matsuo N. Schwartz-Matsuo-syndrome in retinal detachment with tears of the nonpigmented epithelium of the ciliary body. Acta Ophthalmol Scand. 1998;76:481–5.PubMedGoogle Scholar
  91. 91.
    Brown D, Boniuk M, Font RL. Diffuse malignant melanoma of the iris with metastases. Surv Ophthalmol. 1990;34:357–64.PubMedGoogle Scholar
  92. 92.
    Conway RM, Chua WC, Qureshi C, Billson FA. Primary iris melanoma: diagnostic features and outcome of conservative surgical treatment. Br J Ophthalmol. 2001;85(7):848–54.PubMedGoogle Scholar
  93. 93.
    Albert DL, Brownstein S, Kattleman BS. Mucogenic glaucoma caused by an epithelial cyst of the iris stroma. Am J Ophthalmol. 1992;114:222–4.PubMedGoogle Scholar
  94. 94.
    Wakabayashi T, Oshima Y, Sakaguchi H, Ikuno Y, Miki A, Gomi F, et al. Intravitreal bevacizumab to treat iris neovascularization and neovascular glaucoma secondary to ischemic retinal diseases in 41 consecutive cases. Ophthalmology. 2008;115:1571–80.PubMedGoogle Scholar
  95. 95.
    Brouzas D, Charakidas A, Moschos M, Koutsandrea C, Apostolopoulos M, Baltatzis S. Bevacizumab (Avastin) for the management of anterior chamber neovascularization and neovascular glaucoma. Clin Ophthalmol. 2009;3:685–8.PubMedGoogle Scholar
  96. 96.
    Tanaka S, Ideta H, Yonemoto J, Sasaki K, Hirose A, Oka C. Neovascularization of the iris in rhegmatogenous retina detachment. Am J Ophthalmol. 1991;112:632.PubMedGoogle Scholar
  97. 97.
    Luntz MH, Rosenblatt M. Malignant glaucoma. Surv Ophthalmol. 1987;32:73–93.PubMedGoogle Scholar
  98. 98.
    Rodrigues MM, Stulting RD, Waring GO. Clinical, electron microscopic and immunohistochemical study of the corneal endothelium and Descemet’s membrane in the iridocorneal endothelial syndrome. Am J Ophthalmol. 1986;101:16–27.PubMedGoogle Scholar
  99. 99.
    Patel A, Kenyon KR, Hirst LW, Quigley HA, Stark WJ, Meyer RF, Green WR. Clinicopathologic features of Chandler’s syndrome. Surv Ophthalmol. 1983;27:327–44.PubMedGoogle Scholar
  100. 100.
    Rodrigues MM, Jester JV, Richards R, Rajagopalan S, Stevens G. Essential iris atrophy: a clinical, immunohistologic and electron microscopic study in an enucleated eye. Ophthalmology. 1988;95:69–78.PubMedGoogle Scholar
  101. 101.
    Denis P. Iridocorneal endothelial syndrome and glaucoma. J Fr Ophthalmol. 2007;30(2):189–95.Google Scholar
  102. 102.
    Morgan WH, Yu DY. Surgical management of glaucoma: a review. Clin Experiment Ophthalmol. 2012;40:388–99.PubMedGoogle Scholar
  103. 103.
    Brini A, Flament J. Cataracta glaucomatosa acuta. Exp Eye Res. 1973;16:19–28.PubMedGoogle Scholar
  104. 104.
    Radius RL. Anatomy of the optic nerve head and glaucomatous optic neuropathy. Surv Ophthalmol. 1987;32:35–44.PubMedGoogle Scholar
  105. 105.
    Quigley HA, Sanchez RM, Dunkelberger GR, L’Hernault NL, Baginski TA. Chronic glaucoma selectively damages large optic nerve fibres. Invest Ophthalmol Vis Sci. 1987;28:913–20.PubMedGoogle Scholar
  106. 106.
    Jonas JB, Muller Bergh JA, Schlotzer-Schrehardt UM, Naumann GOH. Histomorphometry of the human optic nerve. Invest Ophthalmol Vis Sci. 1990;31:736–44.PubMedGoogle Scholar
  107. 107.
    Jonas JB, Fernandez MC, Naumann GOH. Correlation of the optic disc size to glaucoma susceptibility. Ophthalmology. 1991;98:675–80.PubMedGoogle Scholar
  108. 108.
    Jonas JB, Budde WM. Diagnosis and pathogenesis of glaucomatous optic neuropathy: morphological aspects. Prog Retin Eye Res. 2000;19:1–40.PubMedGoogle Scholar
  109. 109.
    Casson RJ, Chidlow G, Wood JPM, Crowston JG, Goldberg I. Definition of glaucoma: clinical and experimental concepts. Clin Exp Ophthalmol. 2012;40:341–9.Google Scholar
  110. 110.
    Montgomery D. Measurement of optic disc and neuroretinal rim areas in normal and glaucomatous eyes. Ophthalmology. 1991;98:50–9.PubMedGoogle Scholar
  111. 111.
    Malik R, Swanson WH, Garway-Heath DF. ‘Structure-function relationship’ in glaucoma: past thinking and current concepts. Clin Exp Ophthalmol. 2012;40:369–80.Google Scholar
  112. 112.
    Prunte C, Orgul S, Flammer J. Abnormalities of microcirculation in glaucoma: facts and hints. Curr Opin Ophthalmol. 1998;9:50–5.PubMedGoogle Scholar
  113. 113.
    Chung HS, Harris A, Evans DW, Kagemann L, Garzozi HJ, Martin B. Vascular aspects in the pathophysiology of glaucomatous optic neuropathy. Surv Ophthalmol. 1999;43 Suppl 1:S43–50.PubMedGoogle Scholar
  114. 114.
    Grieshaber MC, Mozaffarieh M, Flammer J. What is the link between vascular dysregulation and glaucoma? Surv Ophthalmol. 2007;52:S144–54.PubMedGoogle Scholar
  115. 115.
    Haefliger IO, Dettmann E, Liu R, Meyer P, Prunte C, Messerli J, Flammer J. Potential role of nitric oxide and endothelin in the pathogenesis of glaucoma. Surv Ophthalmol. 1999;43 Suppl 1:S51–8.PubMedGoogle Scholar
  116. 116.
    Yorio T, Krishnamoorthy R, Prasanna G. Endothelin: is it a contributor to glaucoma pathophysiology? J Glaucoma. 2002;11:259–70.PubMedGoogle Scholar
  117. 117.
    Polak K, Luksch A, Berisha F, Fuchsjager-Mayrl G, Dallinger S, Schmetterer L. Altered nitric oxide system in patients with open-angle glaucoma. Arch Ophthalmol. 2007;125:494–8.PubMedGoogle Scholar
  118. 118.
    Pournaras CJ, Rungger-Brandle E, Riva CE, Hardarson SH, Stefansson E. Regulation of retinal blood flow in health and disease. Prog Retin Eye Res. 2008;27:284–330.PubMedGoogle Scholar
  119. 119.
    Miller KM, Quigley HA. The clinical appearance of the lamina cribrosa as a function of the extent of glaucomatous optic nerve damage. Ophthalmology. 1988;95:135–8.PubMedGoogle Scholar
  120. 120.
    Fechtner RD, Weinreb RN. Mechanisms of optic nerve damage in primary open angle glaucoma. Surv Ophthalmol. 1994;39:23–42.PubMedGoogle Scholar
  121. 121.
    Joseph JP, Miller MH, Hitchings RA. Wound healing as a barrier to successful filtration surgery. Eye. 1988;1:113–23.Google Scholar
  122. 122.
    Azuaro-Blanco A, Katz JL. Dysfunctional filtering blebs. Surv Ophthalmol. 1998;43:93–126.Google Scholar
  123. 123.
    Skuta GL, Parrish RK. Wound healing in glaucoma filtering surgery. Surv Ophthalmol. 1987;32:149–70.PubMedGoogle Scholar
  124. 124.
    Mietz H, Arnold G, Kirchof B, Diestelhort M, Krieglstein GK. Histopathology of episcleral fibrosis after trabeculectomy with and without mitomycin C. Graefes Arch Clin Exp Ophthalmol. 1996;234:364–8.PubMedGoogle Scholar
  125. 125.
    Hutchinson AK, Grossniklaus HE, Brown RH, McManus PE, Bradley CK. Clinicopathologic features of excised mitomycin filtering blebs. Arch Ophthalmol. 1994;112:74–9.PubMedGoogle Scholar
  126. 126.
    Quigley HA. Histological and physiological studies of cyclocryotherapy in primate and human eyes. Am J Ophthalmol. 1976;82:722–32.PubMedGoogle Scholar
  127. 127.
    Simmons RB, Prum BE, Shields SR, Echelman DA, Shields MB. Videographic and histologic comparison of Nd:YAG and diode laser contact transscleral cyclophotocoagulation. Am J Ophthalmol. 1994;117:337–41.PubMedGoogle Scholar
  128. 128.
    Kivela T, Puskap P, Raitta C, Immonen I, Tarkkanen A. Clinically successful contact transscleral krypton laser cyclophotocoagulation. Arch Ophthalmol. 1995;113:1447–53.PubMedGoogle Scholar
  129. 129.
    Van Buskirk EM. Pathophysiology of laser trabeculoplasty. Surv Ophthalmol. 1989;33:264–72.PubMedGoogle Scholar
  130. 130.
    Reiss GR, Wilensky JI, Higginbotham EJ. Laser trabeculoplasty. Surv Ophthalmol. 1991;35:407–28.PubMedGoogle Scholar
  131. 131.
    Lee WR, Dutton GN, Cameron SA. Short-pulsed neodymium-YAG laser trabeculotomy. An in vivo morphological study in the human eye. Invest Ophthalmol Vis Sci. 1988;29:1698–707.PubMedGoogle Scholar
  132. 132.
    Hampton C, Shields MB, Miller KN, Blasini M. Evaluation of a protocol for transcleral neodymium: YAG cyclophotcoagulation in one hundred patients. Ophthalmology. 1990;97:910–7.PubMedGoogle Scholar
  133. 133.
    Schuman JS, Puliafito CA, Allingham RR, Belcher CD, Bellows AR, Latina MA, Shingleton BJ. Contact transscleral wave neodymium: YAG laser cyclo-photocoagulation. Ophthalmology. 1990;97:571–80.PubMedGoogle Scholar
  134. 134.
    Melamed S, Fiore PM. Molteno implant surgery in refractory glaucoma. Surv Ophthalmol. 1990;34:441–8.PubMedGoogle Scholar
  135. 135.
    Loeffler KU, Jay JL. Tissue response to aqueous drainage in a functioning Molteno implant. Br J Ophthalmol. 1988;72:29–35.PubMedGoogle Scholar
  136. 136.
    Classen L, Kivela T, Tarkkaanen A. Histopathologic and immunohistochemical analysis of the filtration bleb after unsuccessful glaucoma seton operation. Am J Ophthalmol. 1996;122:205–12.PubMedGoogle Scholar
  137. 137.
    Morgan CM, Schatz H, Vine A, Cantrill HL, Davidorf FH, Gitter KA, et al. Ocular complications associated with retrobulbar injections. Ophthalmology. 1988;95:660–5.PubMedGoogle Scholar
  138. 138.
    Sehu KW, Lee WR, editors. Ophthalmic pathology: an illustrated guide for clinicians. Malden: Blackwell Publishing Ltd; 2008. ISBN 9780727917799.Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Fiona Roberts
    • 1
  • Chee Koon Thum
    • 2
  1. 1.Southern General HospitalGlasgowUK
  2. 2.Western General HospitalEdinburghUK

Personalised recommendations