Skip to main content

Vasoactive Drugs in Acute Care

  • Chapter
  • First Online:
Handbook of Pediatric Cardiovascular Drugs

Abstract

Cardiovascular dysfunction is a common feature of pediatric critical illness. Infants and children with congenital or with acquired cardiovascular diseases may exhibit compromised hemodynamics that require careful consideration when deciding which medications to select or combine. Vasoactive drugs are a cornerstone in the therapy of medical or post-operative patients with cardiovascular dysfunction. This chapter provides an overview of the most commonly used vasoactive drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nissen SE. Cardiovascular and Renal Drugs Advisory Committee. Report from the Cardiovascular and Renal Drugs Advisory Committee: US Food and Drug Administration 2005. Circulation. 2005;112:2043–6.

    PubMed  Google Scholar 

  2. Kay JD, Colan SD, Graham TP. Congestive heart failure in pediatric patients. Am Heart J. 2001;142:923–8.

    CAS  PubMed  Google Scholar 

  3. Hoch M, Netz H. Heart failure in pediatric patients. J Thorac Cardiovasc Surg. 2005;53:S129–34.

    Google Scholar 

  4. Balaguru D, Artman M, Auslender M. Management of heart failure in children. Curr Probl Pediatr. 2000;30:1–35.

    CAS  PubMed  Google Scholar 

  5. Parr GVS, Blackstone EH, Kirklin JW. Cardiac performance and mortality early after intracardiac surgery in infants and young children. Circulation. 1975;51:867–74.

    CAS  PubMed  Google Scholar 

  6. Wernovsky G, Wypij D, Jonas RA, et al. Postoperative course and hemodynamic profile after the arterial switch operation in neonates and infants: a comparison of low-flow cardiopulmonary bypass and circulatory arrest. Circulation. 1995;92:2226–35.

    CAS  PubMed  Google Scholar 

  7. Teng S, Kaufman J, Pan Z, et al. Continuous arterial pressure waveform monitoring in pediatric cardiac transplant, cardiomyopathy and pulmonary hypertension patients. Intensive Care Med. 2011;37:1297–301.

    PubMed  Google Scholar 

  8. Tweddell JS, Hoffman GM. Postoperative management in patients with complex congenital heart disease. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2002;5:187–205.

    PubMed  Google Scholar 

  9. Bohn D. Objective assessment of cardiac output in infants after cardiac surgery. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2011;14:19–23.

    PubMed  Google Scholar 

  10. Bronicki RA, Chang AC. Management of the postoperative pediatric cardiac surgical patient. Crit Care Med. 2011;39:1974–84.

    PubMed  Google Scholar 

  11. McQuillen PS, Nishimoto MS, Bottrell CL, et al. Regional and central venous oxygen saturation monitoring following pediatric cardiac surgery: concordance and association with clinical variables. Pediatr Crit Care Med. 2007;8:154–60.

    PubMed  Google Scholar 

  12. Tortoriello TA, Stayer SA, Mott AR, et al. A noninvasive estimation of mixed venous oxygen saturation using near-infrared spectroscopy by cerebral oximetry in pediatric cardiac surgery patients. Paediatr Anaesth. 2005;15:495–503.

    PubMed  Google Scholar 

  13. Kaufman J, Almodovar MC, Zuk J, et al. Correlation of abdominal site near-infrared spectroscopy with gastric tonometry in infants following surgery for congenital heart disease. Pediatr Crit Care Med. 2008;9:62–88.

    PubMed  Google Scholar 

  14. Overgaard CB, Dzavik V. Inotropes and vasopressors. Review of physiology and clinical use in cardiovascular disease. Circulation. 2008;118:1047–56.

    PubMed  Google Scholar 

  15. Zaristsky A, Chernow B. Use of catecholamines in pediatrics. J Pediatr. 1984;105:341–50.

    Google Scholar 

  16. Short BL, Van Meurs K, Evans JR, Cardiology Group. Summary proceedings from the cardiology group on cardiovascular instability in preterm infants. Pediatrics. 2006;117:S34–39.

    PubMed  Google Scholar 

  17. De Souza RL, de Carvalho WB, Maluf MA, et al. Assessment of splanchnic perfusion with gastric tonometry in the immediate postoperative period of cardiac surgery in children. Arq Bras Cardiol. 2001;77:509–19.

    PubMed  Google Scholar 

  18. McGovern JJ, Cheifetz IM, Craig DM, et al. Right ventricular injury in young swine: effects of catecholamines on right ventricular function and pulmonary vascular mechanics. Pediatr Res. 2000;48:763–9.

    CAS  PubMed  Google Scholar 

  19. Feldman AM. Classification of positive inotropic agents. JACC. 1993;22:1223–7.

    CAS  PubMed  Google Scholar 

  20. Tilley DG, Rockman HA. Role of beta-adrenergic receptor signaling and desensitization in heart failure: new concepts and prospects for treatment. Expert Rev Cardiovasc Ther. 2006;4:417–32.

    CAS  PubMed  Google Scholar 

  21. Li HT, Long CS, Rokosh DG, et al. Chronic hypoxia differentially regulates alpha-1 adrenergic receptor subtype mRNAs and inhibits alpha-1 adrenergic receptor stimulated cardiac hypertrophy and signaling. Circulation. 1995;92:918–25.

    CAS  PubMed  Google Scholar 

  22. Modest VE, Butterworth IV. Effect of pH and lidocaine on beta-adrenergic receptor binding: interaction during resuscitation? Chest. 1995;108:1373–9.

    CAS  PubMed  Google Scholar 

  23. Rieg AD, Schroth SC, Grottke O, et al. Influence of temperature on the positive inotropic effect of levosimendan, dobutamine and milrinone. Eur J Anaesthesiol. 2009;26:946–53.

    CAS  PubMed  Google Scholar 

  24. Nakanishi T, Okuda H, Kamata K, et al. Influence of acidosis on inotropic effect of catecholamines in newborn rabbit hearts. Am J Physiol. 1987;253:H1441–1448.

    CAS  PubMed  Google Scholar 

  25. Marsh JD, Margolis TI, Kim D. Mechanism of diminished contractile response to catecholamines during acidosis. Am J Physiol. 1988;254:H20–27.

    CAS  PubMed  Google Scholar 

  26. Ehle M, Patel C, Giugliano RP. Digoxin: clinical highlights. Crit Pathways in Cardiol. 2011;10:93–8.

    Google Scholar 

  27. Kimball TR, Daniels SR, Meyer RA, et al. Effect of digoxin on contractility and symptoms in infants with a large ventricular septal defect. Am J Cardiol. 1991;168:377–82.

    Google Scholar 

  28. Berman W, Yabek SM, Dillon I, et al. Effects of digoxin in infants with congestive circulatory state due to a ventricular septal defect. N Engl J Med. 1983;308:363.

    PubMed  Google Scholar 

  29. Maeno Y, Hirose A, Hori D. Fetal arrhythmia: prenatal diagnosis and perinatal management. J Obstet Gynaecol Res. 2009;35:623–9.

    PubMed  Google Scholar 

  30. Gheorhgiade M, van Veldhuisen DJ, Colucci WS. Contemporary use of digoxin in the management of cardiovascular disorders. Circulation. 2006;113:2556–64.

    Google Scholar 

  31. Packer M, Ghorhgiades M, Young JB, et al. Withdrawal of digoxin from patients with chronic heart failure treated with angiotensin-converting enzyme inhibitors. RADIANCE study. N Engl J Med. 1993;329:1–7.

    CAS  PubMed  Google Scholar 

  32. Uretsky BF, Young JB, Shahidi FE, et al. for the PROVED Investigative Group. Randomized study assessing the effect of digoxin withdrawal in patients with mild to moderate chronic congestive heart failure: results of the PROVED trial. J Am Coll Cardiol. 1993;22:955–62.

    CAS  PubMed  Google Scholar 

  33. Seguchi M, Nakazawa M, Momma K. Further evidence suggesting a limited role of digitalis in infants with circulatory congestion secondary to large ventricular septal defect. Am J Cardiol. 1999;83:1408–11.

    CAS  PubMed  Google Scholar 

  34. Gheorhgiades M, Adams Jr KF, Colucci WS. Digoxin in the management of cardiovascular disorders. Circulation. 2004;109L:2959–64.

    Google Scholar 

  35. Bendayan R, McKenzie MW. Digoxin pharmacokinetics and dosage requirements in pediatric patients. Clin Pharm. 1983;2:224–35.

    CAS  PubMed  Google Scholar 

  36. Park MK. Use of digoxin in infants and children with specific emphasis on dosage. J Pediatr. 1986;108:871–7.

    CAS  PubMed  Google Scholar 

  37. Bakir M, Bilgic A. Single daily dose of digoxin for maintenance therapy of infants and children with cardiac disease: is it reliable? Pediatr Cardiol. 1994;15:229–32.

    CAS  PubMed  Google Scholar 

  38. Franke HA, Woods DM, Holl JL. High-alert medications in the pediatric intensive care unit. Pediatr Crit Care Med. 2009;10:85–90.

    PubMed  Google Scholar 

  39. Alexander DC, Bundy DG, Shore AD, et al. Cardiovascular medication errors in children. Pediatrics. 2009;124:324–32.

    PubMed  Google Scholar 

  40. Digitalis Investigation Group. The effect of digoxin on mortality and morbidity in patients with heart failure. N Engl J Med. 1997;336:525–33.

    Google Scholar 

  41. Thacker D, Sharma J. Digoxin Toxicity. Clin Pediatr. 2007;47:276–9.

    Google Scholar 

  42. Hussain Z, Swindle J, Hauptman PJ. Digoxin use and digoxin toxicity in the post-DIG trial era. J card Fail. 2006;12:343–6.

    CAS  PubMed  Google Scholar 

  43. Barclay M, Begg E. The practice of digoxin therapeutic drug monitoring. NZ Med J. 2003;116:704.

    Google Scholar 

  44. Park MK. Congestive heart failure. In: Park MK, editor. Pediatric cardiology for practitioners. 4th ed. St. Louis: Mosby; 2002. p. 405–6.

    Google Scholar 

  45. Alvarez J, et al. Hemodynamic effects of levosimendan compared with dobutamine in patients with low cardiac output after cardiac surgery. Rev Esp Cardiol. 2006;59:338–45.

    Google Scholar 

  46. Dellinger RP, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med. 2008;34:17–60.

    PubMed Central  PubMed  Google Scholar 

  47. Woolsey CA, Coopersmith CM. Vasoactive drugs and the gut: is there anything new? Curr Opin Crit Care. 2006;12:155–9.

    PubMed  Google Scholar 

  48. Martikainen TJ, et al. Dobutamine compensates deleterious hemodynamic and metabolic effects of vasopressin in the splanchnic region in endotoxin shock. Acta Anaesthesiol Scand. 2004;48:935–43.

    CAS  PubMed  Google Scholar 

  49. Leier CV, Binkley PF. Parenteral inotropic support for advanced congestive heart failure. Prog Cardiovasc Dis. 1998;41:207–24.

    CAS  PubMed  Google Scholar 

  50. Booker PD, Evans C, Franks R. Comparison of the haemodynamic effects of dopamine and dobutamine in young children undergoing cardiac surgery. Br J Anaesth. 1995;74:419–23.

    CAS  PubMed  Google Scholar 

  51. Roze JC, et al. Response to dobutamine and dopamine in the hypotensive very preterm infant. Arch Dis Child. 1993;69:59–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Miall-Allen VM, Whitelaw AG. Response to dopamine and dobutamine in the preterm infant less than 30 weeks gestation. Crit Care Med. 1989;17:1166–9.

    CAS  PubMed  Google Scholar 

  53. Leier CV, Webel J, Bush CA. The cardiovascular effects of the continuous infusion of dobutamine in patients with severe cardiac failure. Circulation. 1977;56:468–72.

    CAS  PubMed  Google Scholar 

  54. Harada K, et al. Effects of low-dose dobutamine on left ventricular diastolic filling in children. Pediatr Cardiol. 1996;17:220–5.

    CAS  PubMed  Google Scholar 

  55. Product Information: DOBUTamine injection. Bedford: Bedford Laboratories; 2007.

    Google Scholar 

  56. Hiltebrand LB, Krejci V, Sigurdsson GH. Effects of dopamine, dobutamine, and dopexamine on microcirculatory blood flow in the gastrointestinal tract during sepsis and anesthesia. Anesthesiology. 2004;100:1188–97.

    CAS  PubMed  Google Scholar 

  57. Martikainen TJ, et al. Vasopressor agents after experimental brain death: effects of dopamine and vasopressin on vitality of the small gut. Transplant Proc. 2010;42:2449–56.

    CAS  PubMed  Google Scholar 

  58. Kellum JA, Decker JM. Use of dopamine in acute renal failure: a meta-analysis. Crit Care Med. 2001;29:1526–31.

    CAS  PubMed  Google Scholar 

  59. Bellomo R, Cole L, Ronco C. Hemodynamic support and the role of dopamine. Kidney Int Suppl. 1998;66:S71–74.

    CAS  PubMed  Google Scholar 

  60. Sassano-Higgins S, Friedlich P, Seri I. A meta-analysis of dopamine use in hypotensive preterm infants: blood pressure and cerebral hemodynamics. J Perinatol. 2011;31:647–55.

    CAS  PubMed  Google Scholar 

  61. Product Information: DOPamine hydrochloride injection [package insert]. Shirley: American Regent INC.; 2009.

    Google Scholar 

  62. Eldadah MK, et al. Pharmacokinetics of dopamine in infants and children. Crit Care Med. 1991;19:1008–11.

    CAS  PubMed  Google Scholar 

  63. Banner Jr W, et al. Nonlinear dopamine pharmacokinetics in pediatric patients. J Pharmacol Exp Ther. 1989;249:131–3.

    CAS  PubMed  Google Scholar 

  64. Van den Berghe G, de Zegher F. Anterior pituitary function during critical illness and dopamine treatment. Crit Care Med 1996;24:1580–1590.

    Google Scholar 

  65. Van den Berghe G, de Zegher F, Vlasselaers D, Schetz M, Verwaest C, Ferdinande P, Lauwers P. Thyrotropin-releasing hormone in critical illness: from a dopamine-dependent test to a strategy for increasing low serum triiodothyronine, prolactin, and growth hormone concentrations. Crit Care Med 1996;24:590–595.

    Google Scholar 

  66. Schmoelz M, et al. Comparison of systemic and renal effects of dopexamine and dopamine in norepinephrine-treated septic shock. J Cardiothorac Vasc Anesth. 2006;20:173–8.

    CAS  PubMed  Google Scholar 

  67. Hannemann L, et al. Dopexamine hydrochloride in septic shock. Chest. 1996;109:756–60.

    CAS  PubMed  Google Scholar 

  68. Product Information: Dopacard(R) [package insert]. United Kingdom: Cephalon; 2011.

    Google Scholar 

  69. Seguin P, et al. Dopexamine and norepinephrine versus epinephrine on gastric perfusion in patients with septic shock: a randomized study [NCT00134212]. Crit Care. 2006;10:R32.

    PubMed Central  PubMed  Google Scholar 

  70. Fitton A, Benfield P. Dopexamine hydrochloride. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in acute cardiac insufficiency. Drugs. 1990;39:308–30.

    CAS  PubMed  Google Scholar 

  71. Kawczynski P, Piotrowski A. Circulatory and diuretic effects of dopexamine infusion in low-birth-weight infants with respiratory failure. Intensive Care Med. 1996;22:65–70.

    CAS  PubMed  Google Scholar 

  72. Kwapisz MM, et al. Hemodynamic effects of dobutamine and dopexamine after cardiopulmonary bypass in pediatric cardiac surgery. Paediatr Anaesth. 2009;19:862–71.

    PubMed  Google Scholar 

  73. Habre W, et al. Haemodynamic and renal effects of dopexamine after cardiac surgery in children. Anaesth Intensive Care. 1996;24:435–9.

    CAS  PubMed  Google Scholar 

  74. Renton MC, Snowden CP. Dopexamine and its role in the protection of hepatosplanchnic and renal perfusion in high-risk surgical and critically ill patients. Br J Anaesth. 2005;94:459–67.

    CAS  PubMed  Google Scholar 

  75. Plint AC, Johnson DW, Patel H, Wiebe N, Correll R, Brant R, et al. Epinephrine and dexamethasone in children with bronchiolitis. N Engl J Med. 2009;360:2079–89.

    CAS  PubMed  Google Scholar 

  76. Kleinman ME, de Caen AR, Chameides L, Atkins DL, Berg RA, Berg MD, et al. Part 10: pediatric basic and advanced life support: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation. 2010;122:S466–515.

    PubMed Central  PubMed  Google Scholar 

  77. Perondi MB, Reis AG, Paiva EF, Nadkarni VM, Berg RA. A comparison of high-dose and standard-dose epinephrine in children with cardiac arrest. N Engl J Med. 2004;350:1722–30.

    CAS  PubMed  Google Scholar 

  78. Neumar RW, Otto CW, Link MS, Kronick SL, Shuster M, Callaway CW, et al. Part 8: adult advanced cardiovascular life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2010;122:S729–767.

    PubMed  Google Scholar 

  79. Simons FE, Roberts JR, Gu X, Simons KJ. Epinephrine absorption in children with a history of anaphylaxis. J Allergy Clin Immunol. 1998;101:33–7.

    CAS  PubMed  Google Scholar 

  80. Kemp SF, Lockey RF, Simons FE. Epinephrine: the drug of choice for anaphylaxis. A statement of the World Allergy Organization Allergy. 2008;63:1061–70.

    CAS  Google Scholar 

  81. Simons FE, Gu X, Simons KJ. Epinephrine absorption in adults: intramuscular versus subcutaneous injection. J Allergy Clin Immunol. 2001;108:871–3.

    CAS  PubMed  Google Scholar 

  82. Westfall T, Westfall DP. Adrenergic agonists and antagonists. In: Brunton LLCB, Knollmann BC, editors. Goodman and Gilman’s the pharmacological basis of therapeutics. New York: McGraw-Hill; 2011.

    Google Scholar 

  83. Jaccard C, Berner M, Touge JC, et al. Hemodynamic effect of isoprenaline and dobutamine immediately after correction of tetralogy of Fallot: relative importance of inotropic and chronotropic action in supporting cardiac output. J Thorac Cardiovasc Surg. 1884;87:862–69.

    Google Scholar 

  84. American College of Cardiology, American Heart Association Task Force. Adult advanced cardiac life support. JAMA. 1992;268:2199–241.

    Google Scholar 

  85. American College of Cardiology, American Heart Association Task Force. Pediatric advanced life support guidelines. JAMA. 1992;268:2262–75.

    Google Scholar 

  86. American Heart Association in collaboration with the International Liaison Committee on Resuscitation. Guidelines 2000 for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Part 10: pediatric advanced life support. Circulation. 2000;102:1291–342.

    Google Scholar 

  87. American Heart Association in collaboration with the International Liaison Committee on Resuscitation. Guidelines 2000 for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Part 11: neonatal resuscitation. Circulation. 2000;102:1343–57.

    Google Scholar 

  88. Swissa M, Epstein M, Paz C, Shimoni S, Caspi A. Head-up tilt table testing in syncope: safety and efficiency of isosorbide versus isoproterenol in pediatric population. Am Heart J. 2008;156:477–82.

    PubMed  Google Scholar 

  89. Brembilla-Perrot B. Pharmacological testing in the diagnosis of arrhythmias. Minerva Cardioangiol. 2010;58:505–17.

    CAS  PubMed  Google Scholar 

  90. Fujino H, Nakazawa M, Momma K, Imai Y. Long-term results after surgical repair of total anomalous pulmonary venous connection-hemodynamic evaluation of pulmonary venous obstruction with isoproterenol infusion. Jpn Circ J. 1995;59:198–204.

    CAS  PubMed  Google Scholar 

  91. Friedman M, Wang SY, Stahl GL, Johnson RG, Sellke FW. Altered beta-adrenergic and cholinergic pulmonary vascular responses after total cardiopulmonary bypass. J Appl Physiol. 1995;79:1998–2006.

    CAS  PubMed  Google Scholar 

  92. Fullerton DA, Mitchell MB, Jones DN, Maki A, McIntyre Jr RC. Pulmonary vasomotor dysfunction is produced with chronically high pulmonary blood flow. J Thorac Cardiovasc Surg. 1996;111:190–7.

    CAS  PubMed  Google Scholar 

  93. Durandy Y, Batisse A, Lecompte Y. Postoperative inotropic treatment in cardiac surgery of the newborn infant and infant. Ann Fr Anesth Reanim. 1988;7:105–9.

    CAS  PubMed  Google Scholar 

  94. Batmaz G, Villain E, Bonnet D, Iserin L, Fraisse A, Kachaner J. Therapy and prognosis of infectious complete atrioventricular block in children. Arch Mal Coeur Vaiss. 2000;93:553–7.

    CAS  PubMed  Google Scholar 

  95. Reyes G, Schwartz PH, Newth CJ, Eldadah MK. The pharmacokinetics of isoproterenol in critically ill pediatric patients. J Clin Pharmacol. 1993;33:29–34.

    CAS  PubMed  Google Scholar 

  96. Rodriguez-Nunez A, Oulego-Erroz I, Gil-Anton J, Perez-Caballero C, Lopez-Herce J, Gaboli M, Milano G. Continuous terlipressin infusion as rescue treatment in a case series of children with refractory septic shock. Ann Pharmacother. 2010;44:1545–53.

    CAS  PubMed  Google Scholar 

  97. Seguin P, Laviolle B, Guinet P, et al. Dopexamine and norepinephrine versus epinephrine on gastric perfusion in patients with septic shock: a randomized study. Crit Care. 2006;10:32.

    Google Scholar 

  98. Kleinman ME, Chameides L, Schexnayder SM, Samson RA, Hazinski MF, Atkins DL, Berg MD, de Caen AR, Fink EL, Freid EB, Hickey RW, Marino BS, Nadkarni VM, Proctor LT, Qureshi FA, Sartorelli K, Topjian A, van der Jagt EW, Zaritsky AL. Pediatric advanced life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Pediatrics. 2010;126:e1361–399.

    PubMed  Google Scholar 

  99. Kattwinkel J, Perlman JM, Aziz K, Colby C, Fairchild K, Gallagher J, Hazinski MF, Halamek LP, Kumar P, Little G, McGowan JE, Nightengale B, Ramirez MM, Ringer S, Simon WM, Weiner GM, Wyckoff M, Zaichkin J. Part 15: neonatal resuscitation: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2010;122:S909–919.

    PubMed  Google Scholar 

  100. Monnet X, Jabot J, Maizel J, Richard C, Teboul JL. Norepinephrine increases cardiac preload and reduces preload dependency assessed by passive leg raising in septic shock patients. Crit Care Med. 2011;39:689–94.

    CAS  PubMed  Google Scholar 

  101. Nygren A, Thoren A, Ricksten SE. Vasopressors and intestinal mucosal perfusion after cardiac surgery: Norepinephrine vs. phenylephrine. Crit Care Med. 2006;34:722–9.

    CAS  PubMed  Google Scholar 

  102. Vogt W, Laer S. Treatment for paediatric low cardiac output syndrome: results from the European EuLoCOS-Paed survey. Arch Dis Child. 2011;96:1180–6.

    PubMed  Google Scholar 

  103. Wilmshurst PT, Thompson DS, Juul SM, et al. Comparison of the effects of amrinone and sodium nitroprusside on haemodynamics, contractility and myocardial metabolism in patients with cardiac failure due to coronary artery disease and dilated cardiomyopathy. Br Heart J. 1984;52:38–48.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Lawless S, Burckart G, Diven W, et al. Amrinone in neonates and infants after cardiac surgery. Crit Care Med. 1989;17:751–4.

    CAS  PubMed  Google Scholar 

  105. Lynn AM, Sorensen GK, Williams GD. Hemodynamic effects of amrinone and colloid administration in children following cardiac surgery. J Cardiothorac Vasc Anesth. 1993;7:560–5.

    CAS  PubMed  Google Scholar 

  106. The American Heart Association in Collaboration with the International Liaison Committee on Resuscitation. Guidelines 2000 for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Part 6: advanced cardiovascular life support. Circulation. 2000;102:86–171.

    Google Scholar 

  107. Ross-Ascuito N, Ascuitto R, Chen C, et al. Negative inotropic effects of amrinone in the neonatal piglet heart. Circ Res. 1987;61:847–52.

    Google Scholar 

  108. Allen-Webb EM, Ross MP, Pappas JB, et al. Age-related amrinone pharmacokinetics in a pediatric population. Crit Care Med. 1994;22:1016–24.

    CAS  PubMed  Google Scholar 

  109. Honerjager P. Pharmacology of bipyridine phosphodiesterase III inhibitors. Am Heart J. 1991;121:1939–44.

    CAS  PubMed  Google Scholar 

  110. Ross MP, Allen-Webb EM, Pappas JB, et al. Amrinone-associated thrombocytopenia: pharmacokinetic analysis. Clin Pharmacol Ther. 1993;53:661–7.

    CAS  PubMed  Google Scholar 

  111. Majure DT, Teerlink JR. Update on the management of acute decompensated heart failure. Curr Treat Options Cardiovasc Med 2011 (in press).

    Google Scholar 

  112. Hoffman TM, Wernovsky G, Atz AM, et al. Efficacy and safety of milrinone in preventing low cardiac output syndrome in infants and children after corrective surgery for congenital heart disease. Circulation. 2003;107:996–1002.

    CAS  PubMed  Google Scholar 

  113. Hoffman TM, Wernovsky G, Atz AM, et al. Prophylactic intravenous use of milrinone after cardiac operation in pediatrics (PRIMACORP) study. Prophylactic Intravenous Use of Milrinone after Cardiac Operation in Pediatrics. Am Heart J. 2002;143:15–21.

    CAS  PubMed  Google Scholar 

  114. Chang AC, Atz AM, Wernovsky G, et al. Milrinone: systemic and pulmonary hemodynamic effects in neonates after cardiac surgery. Crit Care Med. 1995;23:1907–14.

    CAS  PubMed  Google Scholar 

  115. Hausdorf G. Experience with phosphodiesterase inhibitors in paediatric cardiac surgery. Eur J Anaesth. 1993;8:25–30.

    CAS  Google Scholar 

  116. McNamara PJ, Laigue F, Muang-In S, et al. Milrinone improves oxygenation in neonates with severe persistent pulmonary hypertension of the newborn. J Crit Care. 2006;2:217–22.

    Google Scholar 

  117. Shivananda S, Ahliwahlia L, Kluckow M, et al. Variation in the management of persistent pulmonary hypertension of the newborn: a survey of physicians in Canada, Australia, and New Zealand. Am J Perinatol. 2012;29(7):519–26.

    PubMed  Google Scholar 

  118. Bassler D, Kreutzer K, McNamara P, et al. Milrinone for persistent pulmonary hypertension of the newborn. Cochrane Database Syst Rev 2010;(11):CD007802. Review.

    Google Scholar 

  119. Lakshminrusimha S, Porta NF, Farrow KN, et al. Milrinone enhances relaxation to prostacycil and iloprost in pu, monary arteries isolated from lambs with persistent pulmonary hypertension of the newborn. Pediatr Crit Care Med. 2009;10:106–12.

    PubMed Central  PubMed  Google Scholar 

  120. Barton P, Garcia J, Kouatli A, et al. Hemodynamic effects of IV milrinone lactate in pediatric patients with septic shock. A prospective, double-blinded, randomized, placebo-controlled interventional study. Chest. 1996;109:1302–12.

    CAS  PubMed  Google Scholar 

  121. Zuppa AF, Nicolson SC, Adamson PC, et al. Population pharmacokinetics of milrinone in neonates with hypoplastic left heart syndrome undergoing stage I reconstruction. Anesth Analg. 2006;102:1062–9.

    CAS  PubMed  Google Scholar 

  122. Ramamoorthy C, Anderson GD, Williams GD, et al. Pharmacokinetics and side-effects of milrinone in infants and children after open heart surgery. Anesth Analg. 1998;86:283–9.

    CAS  PubMed  Google Scholar 

  123. Lindsay CA, Barton P, Lawless S, et al. Pharmacokinetics and pharmacodynamics of milrinone lactate in pediatric patients with septic shock. J Pediatr. 1998;132:329–34.

    CAS  PubMed  Google Scholar 

  124. Smith AH, Owen J, Borgman FY, et al. Relation of milrinone after surgery for congenital heart disease to significant postoperative tachyarrhythmias. Am J Cardiol. 2011;109:1620–4.

    Google Scholar 

  125. Van den Born BJ, Beutler JJ, Gaillard CA, de Gooijer A, van den Meiracker AH, Kroon AA. Dutch guideline for the management of hypertensive crisis-2010. Neth J Med. 2011;69:248–55.

    PubMed  Google Scholar 

  126. Rodriguez MA, Kumar SK, De Caro M. Hypertensive crisis. Cardiol Rev. 2010;18:102–7.

    PubMed  Google Scholar 

  127. Varon J. The diagnosis and treatment of hypertensive crises. Postgrad Med. 2009;121:5–13.

    PubMed  Google Scholar 

  128. Flynn JT, Pasko DA. Calcium channel blockers: pharmacology and place in therapy of pediatric hypertension. Pediatr Nephrol. 2000;15:302.

    CAS  PubMed  Google Scholar 

  129. Flynn JT, Smoyer WE, Bunchman TE. Treatment of hypertensive children with amlodipine. Am J Hypertens. 2000;13:1061–6.

    CAS  PubMed  Google Scholar 

  130. Tallian KB, Nahata MC, Turman MA, et al. Efficacy of amlodipine in pediatric patients with hypertension. Pediatr Nephrol. 1999;13:304–10.

    CAS  PubMed  Google Scholar 

  131. Robinson RF, Nahata MC, Batisky DL, et al. Pharmacologic treatment of chronic pediatric hypertension. Paediatr Drugs. 2005;7:27–40.

    PubMed  Google Scholar 

  132. Hom KA, Hirsch R, Elluru RG. Antihypertensive drug-induced angioedema causing upper airway obstruction in children. Int J Pediatr Otorhinolaryngol. 2012;76:14–9.

    PubMed  Google Scholar 

  133. Ganeshalingham A, Wong W. Amlodipine-induced bilateral upper extremity edema. Ann Pharmacother. 2007;41:1536–8.

    CAS  PubMed  Google Scholar 

  134. Tobias JD. Nicardipine to control mean arterial pressure after cardiothoracic surgery in infants and children. Am J Thor. 2001;8:3–6.

    CAS  Google Scholar 

  135. Milou C, Debuche-Benouachkou V, Semama DS, et al. Intravenous nicardipine as a first-line antihypertensive drug in neonates. Intensive Care Med. 2000;26:956–58.

    CAS  PubMed  Google Scholar 

  136. Gouyon JB, Geneste B, Semama DS, et al. Intravenous nicardipine in hypertensive preterm infants. Arch Dis Child Fetal Neonatal Ed. 1997;76:F126–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Corwin S, Reiffel JA. Nitrate therapy for angina pectoris. Arch Int Med. 1985;145:538.

    CAS  Google Scholar 

  138. Elkayam V. Tolerance to organic nitrates: mechanisms, clinical relevance, and strategies for prevention. Ann Int Med. 1991;114:667–77.

    CAS  PubMed  Google Scholar 

  139. Ferguson ME, Pearce FB, Hsu HH, Misra VK, Kirklin JK. Coronary artery spasm during angiography in a pediatric heart transplant recipient: subsequent prevention by intracoronary nitroglycerin administration. Tex Heart Inst J. 2010;37:469–71.

    PubMed Central  PubMed  Google Scholar 

  140. Marlatt KL, McCue MC, Kelly AS, Metzig AM, Steinberger J, Dengel DR. Endothelium-independent dilation in children and adolescents. Clin Physiol Funct Imaging. 2011;31:390–3.

    PubMed Central  PubMed  Google Scholar 

  141. Cheng JW. A review of isosorbide dinitrate and hydralazine in the management of heart failure in black patients, with a focus on a new fixed-dose combination. Clin Ther. 2006;28:666–78.

    CAS  PubMed  Google Scholar 

  142. Taylor AL, Ziesche S, Yancy C, Carson P, D'Agostino Jr R, Ferdinand K, et al. Combination of isosorbide dinitrate and hydralazine in blacks with heart failure. N Engl J Med. 2004;351:2049–57.

    CAS  PubMed  Google Scholar 

  143. Yancy CW, Ghali JK, Braman VM, Sabolinski ML, Worcel M, Archambault WT, et al. Evidence for the continued safety and tolerability of fixed-dose isosorbide dinitrate/hydralazine in patients with chronic heart failure (the extension to African-American Heart Failure Trial). Am J Cardiol. 2007;100:684–9.

    CAS  PubMed  Google Scholar 

  144. Jessup M, Abraham WT, Casey DE, Feldman AM, Francis GS, Ganiats TG, et al. 2009 focused update: ACCF/AHA Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation. 2009;119:1977–2016.

    PubMed  Google Scholar 

  145. Goodman LS, Brunton LL, Chabner B, Knollmann BC. Goodman & Gilman’s pharmacological basis of therapeutics. 12th ed. New York: McGraw-Hill; 2011.

    Google Scholar 

  146. Michel T, Hoffman B. Treatment of myocardial Ischemia and hypertension. In: Brunton LLCB, Knollmann BC, editors. Goodman & Gilman’s the pharmacologic basis of therapeutics. New York: McGraw-Hill; 2011.

    Google Scholar 

  147. Carmody MS, Anderson JR. BiDil (isosorbide dinitrate and hydralazine): a new fixed-dose combination of two older medications for the treatment of heart failure in black patients. Cardiol Rev. 2007;15:46–53.

    PubMed  Google Scholar 

  148. Gibbons RJ, Balady GJ, Bricker JT, Chaitman BR, Fletcher GF, Froelicher VF, et al. ACC/AHA 2002 guideline update for exercise testing: summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). J Am Coll Cardiol. 2002;40:1531–40.

    PubMed  Google Scholar 

  149. Isosorbide dinitrate. In: Drug monografts – accessmedicine [database on the internet]. Columbus: McGraw-Hill. 1978-current [cited 3 May 2012]. Available from: http://www.accessmedicine.com. Subscription required to view.

  150. Giuliano F, Jackson G, Montorsi F, Martin-Morales A, Raillard P. Safety of sildenafil citrate: review of 67 double-blind placebo-controlled trials and the postmarketing safety database. Int J Clin Pract. 2010;64:240–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Palmer RF, Lasseter KC. Drug therapy. Sodium nitroprusside N Engl J Med. 1975;292:294–7.

    CAS  Google Scholar 

  152. Tobias JD. Controlled hypotension in children: a critical review of available agents. Paediatr Drugs. 2002;4:439–53.

    PubMed  Google Scholar 

  153. Thomas CA. Drug treatment of hypertensive crisis in children. Paediatr Drugs. 2011;13:281–90.

    PubMed  Google Scholar 

  154. Tabbutt S, et al. Perioperative course in 118 infants and children undergoing coarctation repair via a thoracotomy: a prospective, multicenter experience. J Thorac Cardiovasc Surg. 2008;136:1229–36.

    PubMed  Google Scholar 

  155. Product Information: Nitropress(R) [package insert]. Lake Forest: Hospira, Inc.; 2007.

    Google Scholar 

  156. Thomas C, Svehla L, Moffett BS. Sodium-nitroprusside-induced cyanide toxicity in pediatric patients. Expert Opin Drug Saf. 2009;8:599–602.

    CAS  PubMed  Google Scholar 

  157. Moffett BS, Price JF. Evaluation of sodium nitroprusside toxicity in pediatric cardiac surgical patients. Ann Pharmacother. 2008;42:1600–4.

    CAS  PubMed  Google Scholar 

  158. Berlin Jr CM. The treatment of cyanide poisoning in children. Pediatrics. 1970;46:793–6.

    PubMed  Google Scholar 

  159. Tobias JD. Preoperative blood pressure management of children with cathecholamine-secreting tumors: time for a change. Pediatr Anesth. 2005;15:537–40.

    Google Scholar 

  160. Kawamura M, Minamikawa O, Yokochi H, Maki S, Yasuda T, Mizukawa Y. Combined use of phenoxybenzamine and dopamine for low cardiac output syndrome in children at withdrawal from cardiopulmonary bypass. Br Heart J. 1980;43:388–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Kulik A, Rubens FD, Gunning D, Bourke ME, Mesana TG, Ruel M. Radial artery graft treatment with phenoxybenzamine is clinically safe and may reduce perioperative myocardial injury. Ann Thorac Surg. 2007;83:502–9.

    PubMed  Google Scholar 

  162. Kiran U, Zuber K, Kakani M. Combination of low-dose phenoxybenzamine and sodium nitroprusside in children undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 2006;20:291–2.

    PubMed  Google Scholar 

  163. Kiran U, Makhija N, Das SN, Bhan A, Airan B. Combination of phenoxybenzamine and nitroglycerin: effective control of pulmonary artery pressures in children undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 2005;19:274–5.

    PubMed  Google Scholar 

  164. Motta P, Mossad E, Toscaca D, Zestos M, Mee R. Comparison of phenoxybenzamine to sodium nitroprusside in infants undergoing surgery. J Cardiothorac Vasc Anesth. 2005;19:54–9.

    CAS  PubMed  Google Scholar 

  165. Li DM, Mullaly R, Ewer P, Bell B, Eyres RL, Brawn WJ, Mee RB. Effects of vasodilators on rates of change of nasopharyngeal temperature and systemic vascular resistance during cardiopulmonary bypass in anaesthetized dogs. Aust N Z J Surg. 1988;58:327–33.

    CAS  PubMed  Google Scholar 

  166. De Oliveira NC, Ashburn DA, Khalid F, Burkhart HM, Adatia IT, Holtby HM, Williams WG, Van Arsdell GS. Prevention of early sudden circulatory collapse after the Norwood operation. Circulation. 2004;110 Suppl 1:II133–38.

    PubMed  Google Scholar 

  167. De Oliveira NC, Van Arsdell GS. Practical use of alpha blockade strategy in the management of hypoplastic left heart syndrome following stage one palliation with a Blalock-Taussig shunt. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2004;7:11–5.

    PubMed  Google Scholar 

  168. O'Blenes SB, Roy N, Konstantinov I, Bohn D, Van Arsdell GS. Vasopressin reversal of phenoxybenzamine-induced hypotension after the Norwood procedure. J Thorac Cardiovasc Surg. 2002;123:1012–3.

    PubMed  Google Scholar 

  169. Weiner N. Drugs that inhibit adrenergic nerves and block adrenergic receptors. In: Goodman LS, Gillman AG, et al., editors. The pharmacological basis of therapeutics. 6th ed. New York: MacMillan Publishing Co; 1980. p. 179–82.

    Google Scholar 

  170. Tuncel M, Ram VC. Hypertensive emergencies. Etiology and management Am J Cardiovasc Drugs. 2003;3:21–31.

    CAS  Google Scholar 

  171. Murphy DJ, Walker ME, Culp DA, Francomacaro DV. Effects of adrenergic antagonists on cocaine-induced changes in respiratory function. Pulm Pharmacol. 1991;4:127–34.

    CAS  PubMed  Google Scholar 

  172. McPherson GA. Current trends in the study of potassium channel openers. Gen Pharmacol. 1993;24:275–81.

    CAS  PubMed  Google Scholar 

  173. Koner O, Tekin S, Koner A, Soybir N, Seren S, Karaoglu K. Effects of phentolamine on tissue perfusion in pediatric cardiac surgery. J Cardiothorac Vasc Anesth. 1999;13:191–7.

    CAS  PubMed  Google Scholar 

  174. Molony D. Adrenaline-induced digital ischaemia reversed with phentolamine. ANZ J Surg. 2006;76:1125–6.

    PubMed  Google Scholar 

  175. Galal MO, El-Naggar WI, Sharfi MH. Phentolamine as a treatment for poor mixing in transposition of the great arteries with adequate intra atrial communication. Pediatr Cardiol. 2005;26:444–5.

    CAS  PubMed  Google Scholar 

  176. Bednarczyk EM, White WB, Munger MA, Gonzalez FM, Panacek EA, Weed SG, et al. Comparative acute blood pressure reduction from intravenous fenoldopam mesylate versus sodium nitroprusside in severe systemic hypertension. Am J Cardiol. 1989;63:993–6.

    CAS  PubMed  Google Scholar 

  177. Post 4th JB, Frishman WH. Fenoldopam: a new dopamine agonist for the treatment of hypertensive urgencies and emergencies. J Clin Pharmacol. 1998;38:2–13.

    CAS  PubMed  Google Scholar 

  178. Cogliati AA, Vellutini R, Nardini A, Urovi S, Hamdan M, Landoni G, et al. Fenoldopam infusion for renal protection in high-risk cardiac surgery patients: a randomized clinical study. J Cardiothorac Vasc Anesth. 2007;21:847–50.

    CAS  PubMed  Google Scholar 

  179. Costello JM, Thiagarajan RR, Dionne RE, Allan CK, Booth KL, Burmester M, et al. Initial experience with fenoldopam after cardiac surgery in neonates with an insufficient response to conventional diuretics. Pediatr Crit Care Med. 2006;7:28–33.

    PubMed  Google Scholar 

  180. Landoni G, Biondi-Zoccai GG, Marino G, Bove T, Fochi O, Maj G, et al. Fenoldopam reduces the need for renal replacement therapy and in-hospital death in cardiovascular surgery: a meta-analysis. J Cardiothorac Vasc Anesth. 2008;22:27–33.

    CAS  PubMed  Google Scholar 

  181. Morelli A, Ricci Z, Bellomo R, Ronco C, Rocco M, Conti G, et al. Prophylactic fenoldopam for renal protection in sepsis: a randomized, double-blind, placebo-controlled pilot trial. Crit Care Med. 2005;33:2451–6.

    CAS  PubMed  Google Scholar 

  182. Murphy MB, McCoy CE, Weber RR, Frederickson ED, Douglas FL, Goldberg LI. Augmentation of renal blood flow and sodium excretion in hypertensive patients during blood pressure reduction by intravenous administration of the dopamine1 agonist fenoldopam. Circulation. 1987;76:1312–8.

    CAS  PubMed  Google Scholar 

  183. Zangrillo A, Biondi-Zoccai GG, Frati E, Covello RD, Cabrini L, Guarracino F, et al. Fenoldopam and acute renal failure in cardiac surgery: a meta-analysis of randomized placebo-controlled trials. J Cardiothorac Vasc Anesth. 2012;26(3):407–13.

    CAS  PubMed  Google Scholar 

  184. Ricci Z, Stazi GV, Di Chiara L, Morelli S, Vitale V, Giorni C, et al. Fenoldopam in newborn patients undergoing cardiopulmonary bypass: controlled clinical trial. Interact Cardiovasc Thorac Surg. 2008;7:1049–53.

    PubMed  Google Scholar 

  185. Knoderer CA, Leiser JD, Nailescu C, Turrentine MW, Andreoli SP. Fenoldopam for acute kidney injury in children. Pediatr Nephrol. 2008;23:495–8.

    PubMed  Google Scholar 

  186. Moffett BS, Mott AR, Nelson DP, Goldstein SL, Jefferies JL. Renal effects of fenoldopam in critically ill pediatric patients: A retrospective review. Pediatr Crit Care Med. 2008;9:403–6.

    PubMed  Google Scholar 

  187. Fenoldopam. Drug monografts: Accessmedicine.

    Google Scholar 

  188. Zahka KG, Roland MA, Cutilletta AF, et al. Management of aortic arch interruption with prostaglandin E1 infusion and microporous expanded polytetrafluoroethylene grafts. Am J Cardiol. 1980;46:1001–5.

    CAS  PubMed  Google Scholar 

  189. Peled N, Dagan O, Babyn P, et al. Gastric-outlet obstruction induced by prostaglandin therapy in neonates. N Engl J Med. 1992;327:505–10.

    CAS  PubMed  Google Scholar 

  190. Woo K, Emery J, Peabody J. Cortical hyperostosis: a complication of prolonged prostaglandin infusion in infants awaiting cardiac transplantation. Pediatrics. 1994;93:417–20.

    CAS  PubMed  Google Scholar 

  191. Kalloghlian AK, Frayha HH. deMoor MM. Cortical hyperostosis simulating osteomyelitis after short-term prostaglandin E1 infusion. Eur J Pediatr. 1996;155:173–4.

    CAS  PubMed  Google Scholar 

  192. Oxenius A, Hug MI, Dodge-Khatami A, Cavigelli-Brunner A, Bauersfeld U, Balmer C. Do predictors exist for a successful withdrawal of preoperative prostaglandin E(1) from neonates with d-transposition of the great arteries and intact ventricular septum? Pediatr Cardiol. 2010;31:1198–202.

    PubMed  Google Scholar 

  193. Beattie LM, McLeod KA. Prostaglandin E2 after septostomy for simple transposition. Pediatr Cardiol. 2009;30:447–51.

    PubMed  Google Scholar 

  194. Hiraishi S, Fujino N, Saito K, Oguchi K, Kadoi N, Agata Y, Horiguchi Y, Hozumi H, Yashiro K. Responsiveness of the ductus arteriosus to prostaglandin E1 assessed by combined cross sectional and pulsed Doppler echocardiography. Br Heart J. 1989;62:140–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  195. Bennett WM, Aronoff GR, Golper TA, et al. Drug prescribing in renal failure. Philadelphia: American College of Physicians; 1994.

    Google Scholar 

  196. Endo H, Shiraishi H, Yanagisawa M. Afterload reduction by hydralazine in children with a ventricular septal defect as determined by aortic input impedance. Cardiovasc Drugs Ther. 1994;8:161–6.

    CAS  PubMed  Google Scholar 

  197. Rao PS. Chronic afterload reduction in infants and children with primary myocardial disease. J Pediatr. 1986;108:530–4.

    CAS  PubMed  Google Scholar 

  198. Nakazawa M, Takao A, Chon Y, Shimizu T, Kanaya M, Momma K. Significance of systemic vascular resistance in determining the hemodynamic effects of hydralazine on large ventricular septal defects. Circulation. 1983;68:420–4.

    CAS  PubMed  Google Scholar 

  199. Nakazawa M, Takao A, Shimizu T, Chon Y. Afterload reduction treatment for large ventricular septal defects. Dependence of haemodynamic effects of hydralazine on pretreatment systemic blood flow. Br Heart J. 1983;49:461–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  200. Russell GI, Bing RF, Jones JA, et al. Hydralazine sensitivity: clinical features, autoantibody changes and HLA-DR phenotype. Q J Med. 1987;65:845–52.

    CAS  PubMed  Google Scholar 

  201. Cinquegrani MP, Liang CS. Indomethacin attenuates the hypotensive action of hydralazine. Clin Pharmacol Ther. 1986;39:564–70.

    CAS  PubMed  Google Scholar 

  202. O’Connor CM, Starling RC, Hernandez AF, Armstrong PW, Dickstein K, Hasselblad V, et al. Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med. 2011;365:32–43.

    PubMed  Google Scholar 

  203. Ezekowitz JA, Hernandez AF, O'Connor CM, Starling RC, Proulx G, Weiss MH, et al. Assessment of dyspnea in acute decompensated heart failure: insights from ASCEND-HF (Acute Study of Clinical Effectiveness of Nesiritide in Decompensated Heart Failure) on the contributions of peak expiratory flow. J Am Coll Cardiol. 2012;59:1441–8.

    PubMed  Google Scholar 

  204. Jefferies JL, Price JF, Denfield SW, Chang AC, Dreyer WJ, McMahon CJ, et al. Safety and efficacy of nesiritide in pediatric heart failure. J Card Fail. 2007;13:541–8.

    CAS  PubMed  Google Scholar 

  205. Simsic JM, Mahle WT, Cuadrado A, Kirshbom PM, Maher KO. Hemodynamic effects and safety of nesiritide in neonates with heart failure. J Intensive Care Med. 2008;23:389–95.

    PubMed  Google Scholar 

  206. Moffett BS, Jefferies JL, Price JF, Clunie S, Denfield S, Dreyer WJ, et al. Administration of a large nesiritide bolus dose in a pediatric patient: case report and review of nesiritide use in pediatrics. Pharmacotherapy. 2006;26:277–80.

    PubMed  Google Scholar 

  207. Mahle WT, Cuadrado AR, Kirshbom PM, Kanter KR, Simsic JM. Nesiritide in infants and children with congestive heart failure. Pediatr Crit Care Med. 2005;6:543–6.

    PubMed  Google Scholar 

  208. Timberlake K, Kantor PF. Pharmacologic therapy of heart failure in children: part of a special series on paediatric pharmacology, guest edited by Gianvincenzo Zuccotti, Emilio Clementi, and Massimo Molteni. Pharmacol Res. 2011;64:427–30.

    CAS  PubMed  Google Scholar 

  209. Ryan A, Rosen DA, Tobias JD. Preliminary experience with nesiritide in pediatric patients less than 12 months of age. J Intensive Care Med. 2008;23:321–8.

    PubMed  Google Scholar 

  210. Nesiritide. In: Drug monografts – Accessmedicine [database on the internet]. Columbus: McGraw-Hill. 1978-current [cited 30 April 2012]. Available from: http://www.accessmedicine.com. Subscription required to view.

  211. Alten JA, Borasino S, Toms R, Law MA, Moellinger A, Dabal RJ. Early initiation of arginine vasopressin infusion in neonates after complex cardiac surgery*. Pediatr Crit Care Med. 2012;13:300–4.

    PubMed  Google Scholar 

  212. Barrett LK, Singer M, Clapp LH. Vasopressin: mechanisms of action on the vasculature in health and in septic shock. Crit Care Med. 2007;35:33–40.

    CAS  PubMed  Google Scholar 

  213. Burton GL, Kaufman J, Goot BH, da Cruz EM. The use of arginine vasopressin in neonates following the Norwood procedure. Cardiol Young. 2011;21:536–44.

    PubMed  Google Scholar 

  214. Carcillo JA. Fields AI; American College of Critical Care Medicine Task Force Committee Members. Clinical practice parameters for hemodynamic support of pediatric and neonatal patients in septic shock. Crit Care Med. 2002;30:1365–78.

    PubMed  Google Scholar 

  215. Holmes CL, Walley KR. Vasopressine in the ICU. Curr Opin Crit Care. 2004;10:442–4.

    PubMed  Google Scholar 

  216. Landry DW, Oliver JA. The pathogenesis of vasodilatory shock. N Engl J Med. 2001;345:588–95.

    CAS  PubMed  Google Scholar 

  217. Lechner E, Hofer A, Mair R, Moosbauer W, Sames-Dolzer E. Tulzer GArginine-vasopressin in neonates with vasodilatory shock after cardiopulmonary bypass. Eur J Pediatr. 2007;166:1221–7.

    CAS  PubMed  Google Scholar 

  218. Mastropietro CW, Rossi NF, Clark JA, Chen H, Walters 3rd H, Delius R, Lieh-Lai M, Sarnaik AP. Relative deficiency of arginine vasopressin in children after cardiopulmonary bypass. Crit Care Med. 2010;38:2052–8.

    CAS  PubMed  Google Scholar 

  219. Mullner M, Urbanek B, Havel C, et al. Vasopressors for shock. Edited by: The Cochrane Database Systematic Reviews 2004; CD003709

    Google Scholar 

  220. Rehberg S, Enkhbaatar P, Rehberg J, La E, Ferdyan N, Qi S, Wisniewski K, Traber LD, Schteingart CD, Riviere PJ, Laporte R, Traber DL. Unlike arginine vasopressin, the selective V1a receptor agonist FE 202158 does not cause procoagulant effects by releasing von Willebrand factor. Crit Care Med. 2012;40(6):1957–60.

    CAS  PubMed  Google Scholar 

  221. Rosenzweig EB, Starc TJ, Chen JM, et al. Intravenous arginine-vasopressin in children with vasodilatory shock after cardiac surgery. Circulation. 1999;100:II182–186.

    CAS  PubMed  Google Scholar 

  222. Russell JA, Walley KR, Singer J, Gordon AC, Hebert PC, Cooper DJ, Holmes CL, Mehta S, Granton JT, Storms MM, Cook DJ, Presneill JJ, Ayers D. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358:877–87.

    CAS  PubMed  Google Scholar 

  223. Zimmerman MA, Albright TN, Raeburn CD, et al. Vasopressin in cardiovascular patients: therapeutic implications. Expert Opin Pharmacother. 2002;3:505–12.

    CAS  PubMed  Google Scholar 

  224. Filippi L, Poggi C, Serafini L, Fiorini P. Terlipressin as rescue treatment of refractory shock in a neonate. Acta Paediatr. 2008;97:500–2.

    PubMed  Google Scholar 

  225. Gil-Anton J, Lopez-Herce J, Morteruel E, Carrillo A, Rodriguez-Nunez A. Pediatric cardiac arrest refractory to advanced life support: is there a role for terlipressin? Pediatr Crit Care Med. 2010;11:139–411.

    PubMed  Google Scholar 

  226. Matok I, Rubinshtein M, Levy A, Vardi A, Leibovitch L, Mishali D, Barzilay Z, Paret G. Terlipressin for children with extremely low cardiac output after open heart surgery. Ann Pharmacother. 2009;43:423–9.

    PubMed  Google Scholar 

  227. Meyer S, McGuire W, Gottschling S, Mohammed Shamdeen G, Gortner L. The role of vasopressin and terlipressin in catecholamine-resistant shock and cardio-circulatory arrest in children: review of the literature. Wien Med Wochenschr. 2011;1(61):192–203.

    Google Scholar 

  228. Morelli A, Ertmer C, Rehberg S, Lange M, Orecchioni A, Cecchini V, Bachetoni A, D'Alessandro M, Van Aken H, Pietropaoli P, Westphal M. Continuous terlipressin versus vasopressin infusion in septic shock (TERLIVAP): a randomized, controlled pilot study. Crit Care. 2009;13:R130.

    PubMed Central  PubMed  Google Scholar 

  229. Papoff P, Mancuso M, Barbara CS, Moretti C. The role of terlipressin in pediatric septic shock: a review of the literature and personal experience. Int J Immunopathol Pharmac ol. 2007;20:213–21.

    CAS  Google Scholar 

  230. Sagi SV, Mittal S, Kasturi KS, Sood GK. Terlipressin therapy for reversal of type 1 hepatorenal syndrome: a meta-analysis of randomized controlled trials. J Gastroenterol Hepatol. 2010;25:880–5.

    CAS  PubMed  Google Scholar 

  231. Westphal M, Stubbe H, Sielenkamper AW, Borgulya R, Van Aken H, Ball C, Bone HG. Terlipressin dose response in healthy and endotoxemic sheep: impact on cardiopulmonary performance and global oxygen transport. Intensive Care Med. 2003;29:301–8.

    PubMed  Google Scholar 

  232. Yousef N, Habes D, Ackermann O, Durand P, Bernard O, Jacquemin E. Hepatorenal syndrome: diagnosis and effect of terlipressin therapy in 4 pediatric patients. J Pediatr Gastroenterol Nutr. 2010;51:100–2.

    PubMed  Google Scholar 

  233. Heytman M, Rainbird A. Use of alpha-agonists for management of anaphylaxis occurring under anaesthesia: case studies and review. Anaesthesia. 2004;59:1210–05.

    CAS  PubMed  Google Scholar 

  234. Holmes CL. Vasoactive drugs in the intensive care unit. Curr Opin Crit Care. 2005;11:413–7.

    PubMed  Google Scholar 

  235. Jacobson L, Turnquist K, Masley S. Wolff-Parkinson-White syndrome. Termination of paroxysmal supraventricular tachycardia with phenylephrine Anaesthesia. 1985;40:657–60.

    CAS  Google Scholar 

  236. Krejci V, Hiltebrand LB, Sigurdsson GH. Effects of epinephrine, norepinephrine, and phenylephrine on microcirculatory blood flow in the gastrointestinal tract in sepsis. Crit Care Med. 2006;34:1456–63.

    CAS  PubMed  Google Scholar 

  237. Shaddy RE, Viney J, Judd VE, et al. Continuous intravenous phenylephrine infusion for treatment of hypoxemic spells in tetralogy of Fallot. J Pediatr. 1989;114:468–70.

    CAS  PubMed  Google Scholar 

  238. Tanaka T, Kitahata H, Kawahito S, et al. Phenylephrine increases pulmonary blood flow in children with tetralogy of Fallot. Can J Anaesth. 2003;50:926–9.

    PubMed  Google Scholar 

  239. Torp KD, Tschakovsky ME, Halliwill JR, Minson CT, Joyner MJ. beta-Receptor agonist activity of phenylephrine in the human forearm. J Appl Physiol. 2001;90:1855–9.

    CAS  PubMed  Google Scholar 

  240. Ford SA, Kam PC, Baldo BA, Fisher MM. Anaphylactic or anaphylactoid reactions in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 2001;15:684–8.

    CAS  PubMed  Google Scholar 

  241. Natalini G, Schivalocchi V, Rosano A, Taranto M, Pletti C, Bernardini A. Norepinephrine and metaraminol in septic shock: a comparison of the hemodynamic effects. Intensive Care Med. 2005;31:634–7.

    PubMed  Google Scholar 

  242. Brown SG. Cardiovascular aspects of anaphylaxis: implications for treatment and diagnosis. Curr Opin Allergy Clin Immunol. 2005;5:359–62.

    PubMed  Google Scholar 

  243. Wood DM, Wright KD, Jones AL, Dargan PI. Metaraminol (Aramine) in the management of a significant amlodipine overdose. Hum Exp Toxicol. 2005;24:377–81.

    CAS  PubMed  Google Scholar 

  244. Kapur S, Mutagi H, Raphael J. Use of metaraminol in patients with familial Mediterranean fever. Anaesthesia. 2006;61:815.

    CAS  PubMed  Google Scholar 

  245. Kelly A, Levine MA. Hypocalcemia in the critically ill patient. J Intensive Care Med. 2013;28(3):166–77.

    PubMed  Google Scholar 

  246. Desai TK, et al. A direct relationship between ionized calcium and arterial pressure among patients in an intensive care unit. Crit Care Med. 1988;16:578–82.

    CAS  PubMed  Google Scholar 

  247. Dyke 2nd PC, et al. Increased calcium supplementation is associated with morbidity and mortality in the infant postoperative cardiac patient. Pediatr Crit Care Med. 2007;8:254–7.

    PubMed  Google Scholar 

  248. Murdoch IA, Qureshi SA, Huggon IC. Perioperative haemodynamic effects of an intravenous infusion of calcium chloride in children following cardiac surgery. Acta Paediatr. 1994;83:658–61.

    CAS  PubMed  Google Scholar 

  249. Srinivasan V, et al. Calcium use during in-hospital pediatric cardiopulmonary resuscitation: a report from the National Registry of Cardiopulmonary Resuscitation. Pediatrics. 2008;121:e1144–1451.

    PubMed  Google Scholar 

  250. Ho KM, Leonard A. Concentration-dependent effect of hypocalcaemia on mortality of patients with critical bleeding requiring massive transfusion: a cohort study. Anaesthesia and Intensive Care. 2011;39:46–54.

    CAS  PubMed  Google Scholar 

  251. Product Information: Calcium gluconate injection 10 %. Schaumburg: APP Pharmaceuticals; 2009.

    Google Scholar 

  252. Agus ZS, Wasserstein A, Goldfarb S. Disorders of calcium and magnesium homeostasis. Am J Med. 1982;72:473–88.

    CAS  PubMed  Google Scholar 

  253. Product Information: 10% calcium chloride injection. Lake Forest: Hospira, Inc.; 2009.

    Google Scholar 

  254. Bennett-Guerrero E, Jimenez JL, White WD, et al. Cardiovascular effects of intravenous triiodothyronine in patients undergoing coronary artery bypass graft surgery. A randomized, double-blind, placebo- controlled trial. Duke T3 study group. JAMA. 1996;275:687–92.

    CAS  PubMed  Google Scholar 

  255. Bettendorf M, Schmidt KG, Grulich-Henn J, Ulmer HE, Heinrich UE. Tri-iodothyronine treatment in children after cardiac surgery: a double-blind, randomised, placebo-controlled study. Lancet. 2000;356:529–34.

    CAS  PubMed  Google Scholar 

  256. Boylston BF. Triiodothyronine and cardiac surgery. JAMA. 1996;276:100–1.

    CAS  PubMed  Google Scholar 

  257. Dimmick S, Badawi N, Randell T. Thyroid hormone supplementation for the prevention of morbidity and mortality in infants undergoing cardiac surgery. The Cochrane Database of Systematic Reviews. 2004;3, CD004220.

    PubMed  Google Scholar 

  258. Klemperer JD. Thyroid hormone and cardiac surgery. Thyroid. 2002;12:517–21.

    CAS  PubMed  Google Scholar 

  259. Mainwaring RD, Nelson JC. Supplementation of thyroid hormone in children undergoing cardiac surgery. Cardiol Young. 2002;12:211–7.

    PubMed  Google Scholar 

  260. Portman MA, Fearneyhough C, Ning XH, et al. Triiodothyronine repletion in infants during cardiopulmonary bypass for congenital heart disease. J Thorac Cardiovasc Surg. 2000;120:604–8.

    CAS  PubMed  Google Scholar 

  261. Portman MA, Slee A, Olson AK, Cohen G, Karl T, Tong E, Hastings L, Patel H, Reinhartz O, Mott AR, Mainwaring R, Linam J, Danzi S. Triiodothyronine Supplementation in Infants and Children Undergoing Cardiopulmonary Bypass (TRICC): a multicenter placebo-controlled randomized trial: age analysis. Circulation. 2010;122:S224–233.

    CAS  PubMed Central  PubMed  Google Scholar 

  262. Mackie AS, Booth KL, Newburger JW, Gauvreau K, Huang SA, Laussen PC, DiNardo JA, del Nido PJ, Mayer JE Jr, Jonas RA, McGrath E, Elder J, Roth SJ. A randomized, double-blind, placebo-controlled pilot trial of triiodothyronine in neonatal heart surgery. J Thorac Cardiovasc Surg. 2005;130:810–816.

    Google Scholar 

  263. Tritapepe L, De Santis V, Vitale D, Santulli M, Morelli A, Nufroni I, Puddu PE, Singer M, Pietropaoli P. Preconditioning effects of levosimendan in coronary artery bypass-grafting- a pilot study. Br J Anaesth. 2006;96:694–700.

    CAS  PubMed  Google Scholar 

  264. Egan JR, Clarke AJ, Williams S, et al. Levosimendan for low cardiac output: a pediatric experience. J Intensive Care Med. 2006;21:183–7.

    PubMed  Google Scholar 

  265. Raja SG, Rayen BS. Levosimendan in cardiac surgery: current best available evidence. Ann Thorac Surg. 2006;81:1536–46.

    PubMed  Google Scholar 

  266. Toller WG, Stranz C. Levosimendan, a new inotropic and vasodilator agent. Anesthesiology. 2006;104:556–69.

    CAS  PubMed  Google Scholar 

  267. Turanlahti M, Boldt T, Palkama T, et al. Pharmacokinetics of levosimendan in pediatric patients evaluated for cardiac surgery. Pediatr Crit Care Med. 2004;5:457–62.

    PubMed  Google Scholar 

  268. Siirila-Waris K, Suojaranta-Ylinen R, Harjola VP. Levosimendan in cardiac surgery. J Cardiothorac Vasc Anesth. 2005;19:345–9.

    CAS  PubMed  Google Scholar 

  269. Huang L, Weil MH, Tang W, et al. Comparison between dobutamine and levosimendan for management of postresuscitation myocardial dysfunction. javascript:AL_get(this, 'jour', 'Crit Care Med'.). Crit Care Med. 2005;33:487–91.

    CAS  PubMed  Google Scholar 

  270. Morelli A, Teboul JL, Maggiore SM, Vieillard-Baron A, Rocco M, Conti G, De Gaetano A, Picchini U, Orecchioni A, Carbone I, Tritapepe L, Pietropaoli P, Wesrphal M. Effects of levosimendan on right ventricular afterload in patients with acute respiratory distress: a pilot study. Crit Care Med. 2006;34:2287–93.

    CAS  PubMed  Google Scholar 

  271. Lilleberg J, Laine M, Palkama T, Kivikko M, Pohjanjousi P, Kupari M. Duration of haemodynamic action of a 24-h infusion in patients with congestive heart failure. Eur J Heart Fail. 2007;9:75–82.

    CAS  PubMed  Google Scholar 

  272. Parissis JT, Adamopoulos S, Farmakis D, Filippatos G, Paraskevaidis J, Panou F, Iliodromitis E, Kremastinos DT. Effects of serial levosimendan infusions on left ventricular performance and plasma biomarkers of myocardial injury and neurohormonal and immune activation in patients with advanced heart failure. Heart. 2006;92:1768–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  273. Namachivayam P, Crossland DS, Butt W, Shekerdemian LS. Early experience with levosimendan in children with ventricular dysfunction. Pediatr Crit Care Med. 2006;7:445–8.

    PubMed  Google Scholar 

  274. Kumar S, Kumar A, Santis V. The preconditioning effects of levosimendan. Br J Anaesth. 2006;97:425.

    CAS  PubMed  Google Scholar 

  275. Suominen PK. Single-center experience with levosimendan in children undergoing cardiac surgery and in children with decompensated heart failure. BMC Anesthesiol. 2011;11:18.

    CAS  PubMed Central  PubMed  Google Scholar 

  276. Magliola R, Moreno G, Vassallo JC, Landry LM, Althabe M, Balestrini M, Charroqui A, Salgado G, Lataza E, Chang AC. Levosimendan, a new inotropic drug: experience in children with acute heart failure. Arch Argent Pediatr. 2009;107:139–45. Spanish.

    PubMed  Google Scholar 

  277. Vogt W, Läer S. Prevention for pediatric low cardiac output syndrome: results from the European survey EuLoCOS-Paed. Paediatr Anaesth. 2011;21:1176–84.

    PubMed  Google Scholar 

  278. Momeni M, Rubay J, Matta A, Rennotte MT, Veyckemans F, Poncelet AJ. Clement de Clety S, Anslot C, Joomye R, Detaille T. Levosimendan in congenital cardiac surgery: a randomized, double-blind clinical trial. J Cardiothorac Vasc Anesth. 2011;25:419–24.

    CAS  PubMed  Google Scholar 

  279. Follath F, Cleland JG, Just H, Papp JG, Scholz H, Peuhkurinen K, Harjola VP, Mitrovic V, Abdalla M, Sandell EP, Lehtonen L. Steering Committee and Investigators of the Levosimendan Infusion versus Dobutamine (LIDO) Study. Efficacy and safety of intravenous levosimendan compared with dobutamine in severe low-output heart failure (the LIDO study): a randomised double-blind trial. Lancet. 2002;360:196–202.

    CAS  PubMed  Google Scholar 

  280. Gheorghiade M, Ambrosy AP, Ferrandi M, Ferrari P. Combining SERCA2a activation and Na-K ATPase inhibition: a promising new approach to managing acute heart failure syndromes with low cardiac output. Discov Med. 2011;12:141–51.

    PubMed  Google Scholar 

  281. Shah SJ, Blair JE, Filippatos GS, Macarie C, Ruzyllo W, Korewicki J, et al. Effects of istaroxime on diastolic stiffness in acute heart failure syndromes: results from the Hemodynamic, Echocardiographic, and Neurohormonal Effects of Istaroxime, a Novel Intravenous Inotropic and Lusitropic Agent: a Randomized Controlled Trial in Patients Hospitalized with Heart Failure (HORIZON-HF) trial. Am Heart J. 2009;157:1035–41.

    CAS  PubMed  Google Scholar 

  282. Micheletti R, Palazzo F, Barassi P, Giacalone G, Ferrandi M, Schiavone A, et al. Istaroxime, a stimulator of sarcoplasmic reticulum calcium adenosine triphosphatase isoform 2a activity, as a novel therapeutic approach to heart failure. Am J Cardiol. 2007;99:24A–32A.

    CAS  PubMed  Google Scholar 

  283. Micheletti R, Mattera GG, Rocchetti M, Schiavone A, Loi MF, Zaza A, et al. Pharmacological profile of the novel inotropic agent (E, Z)-3-((2-aminoethoxy)imino)androstane-6,17-dione hydrochloride (PST2744). J Pharmacol Exp Ther. 2002;303:592–600.

    CAS  PubMed  Google Scholar 

  284. Gheorghiade M, Blair JE, Filippatos GS, Macarie C, Ruzyllo W, Korewicki J, et al. Hemodynamic, echocardiographic, and neurohormonal effects of istaroxime, a novel intravenous inotropic and lusitropic agent: a randomized controlled trial in patients hospitalized with heart failure. J Am Coll Cardiol. 2008;51:2276–85.

    CAS  PubMed  Google Scholar 

  285. Blair JE, Macarie C, Ruzyllo W, Bacchieri A, Valentini G, Bianchetti M, et al. Rationale and design of the hemodynamic, echocardiographic and neurohormonal effects of istaroxime, a novel intravenous inotropic and lusitropic agent: a randomized controlled trial in patients hospitalized with heart failure (HORIZON-HF) trial. Am J Ther. 2008;15:231–40.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo M. da Cruz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

da Cruz, E.M., Kaufman, J., Burton, G., Eshelman, J., Tissot, C., Barrett, C. (2014). Vasoactive Drugs in Acute Care. In: Munoz, R., da Cruz, E., Vetterly, C., Cooper, D., Berry, D. (eds) Handbook of Pediatric Cardiovascular Drugs. Springer, London. https://doi.org/10.1007/978-1-4471-2464-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2464-1_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2463-4

  • Online ISBN: 978-1-4471-2464-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics