Point Pattern Matching

Part of the Advances in Computer Vision and Pattern Recognition book series (ACVPR)

Abstract

Various point pattern matching algorithms are reviewed and compared. Among the matching algorithms discussed are random sample and consensus (RANSAC), graph-based, feature-based, clustering-based, invariance-based, axis of minimum inertia-based, relaxation-based, and spectral graph theory-based algorithms. To speed up the matching process, the coarse-to-fine search strategy is also discussed and its use in matching of point patterns with nonlinear geometric differences is demonstrated. Also included in this chapter are detailed matching algorithms and methods to determine their performances.

Keywords

Hull Pyramid 

References

  1. 1.
    Ahuja, N.: Dot pattern processing using Voronoi neighborhoods. IEEE Trans. Pattern Anal. Mach. Intell. 4(3), 336–343 (1982) MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bolles, R.C.: Robust feature matching through maximal cliques. In: SPIE Conf. Imaging Applications for Automated Industrial Inspection and Assembly, vol. 182, pp. 140–149 (1979) CrossRefGoogle Scholar
  3. 3.
    Bowyer, A.: Computing Dirichlet tessellations. Comput. J. 24(2), 162–166 (1981) MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bron, C., Kerbosch, J.: Algorithm 547: Finding all cliques of an undirected graph. Commun. ACM 16(9), 575–577 (1973) MATHCrossRefGoogle Scholar
  5. 5.
    Capel, D.: An effective bail-out test for RANSAC consensus scoring. In: Proc. British Machine Vision Conf., pp. 629–638 (2005) Google Scholar
  6. 6.
    Carcassoni, M., Hancock, E.R.: Point pattern matching with robust spectral correspondence. In: IEEE Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 649–655 (2000) Google Scholar
  7. 7.
    Carcassoni, M., Hancock, E.R.: Spectral correspondence for point pattern matching. Pattern Recognit. 36, 193–204 (2003) MATHCrossRefGoogle Scholar
  8. 8.
    Chang, S.-H., Cheng, F.-H., Hsu, W.-H., Wu, G.-Z.: Fast algorithm for point pattern matching: Invariant to translations, rotations, and scale changes. Pattern Recognit. 30(2), 311–320 (1997) CrossRefGoogle Scholar
  9. 9.
    Cheng, F.-H.: Point pattern matching algorithm invariant to geometrical transformation and distortion. Pattern Recognit. Lett. 17, 1429–1435 (1996) MATHCrossRefGoogle Scholar
  10. 10.
    Choi, O., Kweon, I.S.: Robust feature point matching by preserving local geometric consistency. Comput. Vis. Image Underst. 113, 726–742 (2009) CrossRefGoogle Scholar
  11. 11.
    Chum, O., Matas, J.: Matching with PROSAC–progressive sample consensus. In: Proc. Computer Vision and Pattern Recognition, vol. 1, pp. 220–226 (2005) Google Scholar
  12. 12.
    Chum, O., Matas, J.: Optimal randomized RANSAC. IEEE Trans. Pattern Anal. Mach. Intell. 30(8), 1472–1482 (2008) CrossRefGoogle Scholar
  13. 13.
    Chung, F.R.K.: Spectral Graph Theory, 2nd edn., pp. 1–22. Am. Math. Soc., Providence (1997) MATHGoogle Scholar
  14. 14.
    Coelho, C., Heller, A., Mundy, J.L., Forsyth, D.A., Zisserman, A.: An experimental evaluation of projective invariants. In: Mundy, J.L., Zisserman, A. (eds.) Geometric Invariance in Computer Vision, pp. 87–104. The MIT Press, Cambridge (1992) Google Scholar
  15. 15.
    Denton, J.A., Beveridge, J.R.: An algorithm for projective point matching in the presence of spurious points. Pattern Recognit. 40, 586–595 (2007) MATHCrossRefGoogle Scholar
  16. 16.
    Dwyer, R.A.: A faster divide-and-conquer algorithm for constructing Delaunay triangulations. Algorithmica 2, 137–151 (1987) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Fang, T.J., Huang, Z.H., Kanal, L.N., Lavine, B.D., Stockman, G., Xiong, F.L.: Three-dimensional object recognition using a transform clustering technique. In: Proc. 6th Int’l Conf. Pattern Recognition, pp. 678–681 (1982) Google Scholar
  18. 18.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981) MathSciNetCrossRefGoogle Scholar
  19. 19.
    Forsyth, D., Ponce, J.: Computer Vision: A Modern Approach. Prentice Hall, New York (2002) Google Scholar
  20. 20.
    Goshtasby, A., Page, C.V.: Image matching by a probabilistic relaxation labeling process. In: Proc. 7th Int’l Conf. Pattern Recognition, vol. 1, pp. 307–309 (1984) Google Scholar
  21. 21.
    Goshtasby, A., Stockman, G.C.: Point pattern matching using convex hull edges. IEEE Trans. Syst. Man Cybern. 15(5), 631–637 (1985) CrossRefGoogle Scholar
  22. 22.
    Grimson, W.E.L., Huttenlocher, D.P.: On the sensitivity of geometric hashing. In: Proc. 3rd Int’l Conf. Computer Vision, pp. 334–338 (1990) Google Scholar
  23. 23.
    Hong, J., Tan, X.: A new approach to point pattern matching. In: Proc. 9th Int’l Conf. Pattern Recognition, vol. 1, pp. 82–84 (1988) Google Scholar
  24. 24.
    Hsiao, E., Collet, A., Hebert, M.: Making specific features less discriminative to improve point-based 3D object recognition. In: Int’l Conf. Computer Vision and Pattern Recognition, pp. 2653–2660 (2010) Google Scholar
  25. 25.
    Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 2, 83–97 (1955) CrossRefGoogle Scholar
  26. 26.
    Lamdan, Y., Wolfson, H.J.: Geometric hashing: A general and efficient model-based recognition scheme. In: Proc. 2nd Int’l Conf. Computer Vision, pp. 238–249 (1988) Google Scholar
  27. 27.
    Lamdan, Y., Wolfson, H.J.: On the error analysis of geometric hashing. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 22–27 (1991) Google Scholar
  28. 28.
    Lavine, D., Lambird, B.A., Kanal, L.N.: Recognition of spatial point patterns. Pattern Recognit. 16(3), 289–295 (1983) MATHCrossRefGoogle Scholar
  29. 29.
    Lee, J.-H., Won, C.-H.: Topology preserving relaxation labeling for nonrigid point matching. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 427–432 (2011) CrossRefGoogle Scholar
  30. 30.
    Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems using pairwise constraints. In: Proc. Int’l Conf. Computer Vision, vol. 2, pp. 1482–1489 (2005) Google Scholar
  31. 31.
    Matas, J., Chum, O.: Randomized RANSAC with Td:d test. Image Vis. Comput. 22(10), 837–842 (2004) CrossRefGoogle Scholar
  32. 32.
    Mundy, J.L., Zisserman, A.: Geometric Invariance in Computer Vision. The MIT Press, Cambridge (1992) Google Scholar
  33. 33.
    Nister, D.: Preemptive RANSAC for live structure and motion estimation. In: Proc. Int’l Conf. Computer Vision, Oct., vol. 1, pp. 199–206 (2003) CrossRefGoogle Scholar
  34. 34.
    Ogawa, H.: Labeled point pattern matching by fuzzy relaxation. Pattern Recognit. 17(5), 569–573 (1984) CrossRefGoogle Scholar
  35. 35.
    Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Englewood Cliffs (1982) MATHGoogle Scholar
  36. 36.
    Pilu, M.: A direct method for stereo correspondence based on singular value decomposition. In: IEEE Conf. Computer Vision and Pattern Recognition, pp. 261–266 (1997) Google Scholar
  37. 37.
    Rabin, J., Delon, J., Gousseau, Y.: A statistical approach to the matching of local features. SIAM J. Imaging Sci. 2(3), 931–958 (2008) MathSciNetCrossRefGoogle Scholar
  38. 38.
    Ranade, S., Rosenfeld, A.: Point pattern matching by relaxation. Pattern Recognit. 12(4), 269–275 (1980) CrossRefGoogle Scholar
  39. 39.
    Rosenfeld, A., Hummel, R.A., Zucker, S.W.: Scene labeling by relaxation operations. IEEE Trans. Syst. Man Cybern. 6(6), 420–433 (1976) MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Sclaroff, S., Pentland, A.P.: Model matching for correspondence and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 17(6), 545–561 (1995) CrossRefGoogle Scholar
  41. 41.
    Scott, G.L., Longuet-Higgins, H.C.: An algorithm for associating the features of two images. Proc. R. Soc. Lond. B 244, 21–26 (1991) CrossRefGoogle Scholar
  42. 42.
    Serradell, E., Özuysal, M., Lepetit, V., Fua, P., Moreno-Noguer, F.: Combining geometric and appearance priors for robust homography estimation. In: Proc. European Conf. Computer Vision (2010) Google Scholar
  43. 43.
    Shapiro, L.S., Brady, J.M.: Feature-based correspondence: An eigenvector approach. Image Vis. Comput. 10(5), 283–288 (1992) CrossRefGoogle Scholar
  44. 44.
    Stewart, G.W.: On the early history of the singular value decomposition. SIAM Rev. 35(4), 551–566 (1993) MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Stockman, G.: Object recognition and localization via pose clustering. Comput. Vis. Graph. Image Process. 40, 361–387 (1987) CrossRefGoogle Scholar
  46. 46.
    Stockman, G., Esteva, J.C.: Use of geometrical constraints and clustering to determine 3-D object pose. In: Proc. 7th Int’l Conf. Pattern Recognition, vol. 2, pp. 742–744 (1984) Google Scholar
  47. 47.
    Stockman, G., Kopstein, S., Benett, S.: Matching images to models for registration and object detection via clustering. IEEE Trans. Pattern Anal. Mach. Intell. 4(3), 229–241 (1982) CrossRefGoogle Scholar
  48. 48.
    Tordoff, B., Murray, D.W.: Guided sampling and consensus for motion estimation. In: Proc. European Conf. Computer Vision, pp. 82–98 (2002) Google Scholar
  49. 49.
    Torr, P., Zisserman, A.: MLESAC: A new robust estimator with application to estimating image geometry. In: Computer Vision and Image Understanding, pp. 138–156 (2000) Google Scholar
  50. 50.
    Umeyama, S.: An eigendecomposition approach to weighted graph matching problems. IEEE Trans. Pattern Anal. Mach. Intell. 10(5), 695–703 (1988) MATHCrossRefGoogle Scholar
  51. 51.
    van Wamelen, P.B., Li, Z., Iyengar, S.S.: A fast expected time algorithm for the 2-D point pattern matching problem. Pattern Recognit. 37, 1699–1711 (2004) CrossRefGoogle Scholar
  52. 52.
    Wang, W.-H., Chen, Y.-C.: Point pattern matching by line segments and labels. Electron. Lett. 33(6), 478–479 (1997) CrossRefGoogle Scholar
  53. 53.
    Wang, H., Hancock, E.R.: A kernel view of spectral point pattern matching. In: Proc. IAPR Int’l Workshop Structural, Syntactic, and Statistical Pattern Recognition, pp. 361–369 (2004) CrossRefGoogle Scholar
  54. 54.
    Wolfson, H.J., Rigoutsos, I.: Geometric hashing: An overview. In: IEEE Computational Science & Engineering, Oct.–Dec., pp. 10–21 (1997) Google Scholar
  55. 55.
    Wu, Z., Goshtasby, A.: A subdivision approach to image registration. Technical Report, Intelligent Systems Laboratory, Department of Computer Science and Engineering, Wright State University, January 2011 Google Scholar
  56. 56.
    Zhan, C.T. Jr.: An algorithm for noisy template matching. In: Information Processing 74, pp. 698–701. North-Holland, Amsterdam (1974) Google Scholar
  57. 57.
    Zhang, W., Kos̆ecká, J.: Generalized RANSAC framework for relaxed correspondence problems. In: Proc. Int’l Sym. 3D Data Processing, Visualization, and Transmission (2006) Google Scholar
  58. 58.
    Zhao, Z., Liu, H.: Searching for interacting features. In: Proc. Int’l J. Conf. Artificial Intelligence (IJCAI), January (2007) Google Scholar
  59. 59.
    Zhao, J., Zhou, S., Sun, J., Li, Z.: Point pattern matching using relative shape context and relaxation labeling. In: Proc. 2nd Int’l Conf. Advanced Computer Control (ICACC), vol. 5, pp. 516–520 (2010) Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Dept. Computer Science and Engineering, 303 Russ Engineering CenterWright State UniversityDaytonUSA

Personalised recommendations