Skip to main content

Robust Multivariable Tuning Methods

  • Chapter

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

A large number of tuning methods have been developed for automatic tuning of Single-Input Single-Output (SISO) PID controllers. Many industrial processes are however multivariable. It is possible to design and use decoupling compensators to reduce the loop interactions and then use SISO methods to tune the PID controllers. This will however need to be repeated when the process operating condition changes. Furthermore, decoupling methods work well only for systems with weak loop interactions. Despite the wide popularity and extensive research for SISO tuning methods, the number of tuning methods for Multi-Input Multi-Output (MIMO) systems is limited. The MIMO control loops may also be tuned sequentially using scalar techniques. This is not often sufficient since tuning a loop may detune other loops in the system. Some sequential tuning methods are partially open loop and only applicable to open-loop stable system. Furthermore these methods are time consuming, expensive and not easily accepted by the plant operators. This chapter reviews and discusses some easy to use practical multivariable methods and demonstrates their application to an industrial example.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Äström, K.J., Hägglund, T.: PID Controllers: Theory, Design and Tuning, 2nd edn. Instrument Society of America (1995)

    Google Scholar 

  2. Davison, E.: Multivariable tuning regulators: The feedforward and robust control of a general servomechanism problem. IEEE Trans. Autom. Control 21(1), 35–47 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dong, J., Brosilow, C.B.: Design of robust multi-variable PID controllers via IMC. In: Proc. of the American Control Conference, pp. 3380–3384 (1997)

    Google Scholar 

  4. Gagnon, E., Pomerleau, A., Desbiens, A.: Mu-synthesis of robust decentralised PI controllers. IEE Proc., Control Theory Appl. 146(4), 289–294 (1999)

    Article  Google Scholar 

  5. Garcia, C.E., Morari, M.: Internal model control. 1. A unifying review and some new results. In: Industrial and Engineering Chemical Process Design and Development (1982)

    Google Scholar 

  6. Hang, C.C., Tay, T.T., Vasnani, V.U.: Auto-tuning of multivariable de-coupling controllers. Report CI-90-6 (1990)

    Google Scholar 

  7. Ho, W.K., Xu, W.: Multivariable PID controllers design based on the direct Nyquist array method. In: Proc. American Control Conference, pp. 3524–3528 (1998)

    Google Scholar 

  8. Katebi, M.R., Grimble, M.J., Zhang, Y.: H-infinity robust control designs for dynamic ship position. Proc. IEEE 144(2), 110–120 (1997)

    MATH  Google Scholar 

  9. Katebi, M.R., Moradi, M.H., Johnson, M.A.: A comparison of stability and performance robustness of multivariable PID tuning methods. In: Proceedings of PID 2000 Conference, Terrassa, Spain (2000)

    Google Scholar 

  10. Koivo, H.N., Tanttu, J.T.: Tuning of PID controllers: Survey of SISO and MIMO techniques. In: Proceedings of the IFAC Intelligent Tuning and Adaptive Control Symposium, Singapore, pp. 75–81 (1991)

    Google Scholar 

  11. Lieslehto, J., Koivo, H.N.: An expert system for interaction analysis of multivariable systems. In: Proceedings of the 1987 American Control Conference, Minneapolis, MN, USA, pp. 961–962 (1987)

    Google Scholar 

  12. Loh, A.P., Hang, C.C., Quek, C.K., Vasnani, V.U.: Autotuning of multiloop proportional-integral controllers using relay feedback. Ind. Eng. Chem. Res. 32, 1102–1107 (1993)

    Article  Google Scholar 

  13. Luyben, W.: Process Modelling, Simulation and Control for Chemical Engineers. McGraw-Hill, New York (1990)

    Google Scholar 

  14. Maciejowski, J.M.: Multivariable Feedback Design. Addison-Wesley, Wokingham (1989)

    MATH  Google Scholar 

  15. Martin, P., Katebi, M.R.: Multivariable PID tuning for dynamic ship positioning. J. Mar. Des. Oper. 7, 11–24 (2005)

    Google Scholar 

  16. Menani, S., Koivo, H.N.: Relay tuning of multivariable controllers. In: IFAC, 13th Triennial World Congress, pp. 139–144 (1996)

    Google Scholar 

  17. Niederlinski, A.: A heuristic approach to the design of linear multivariable interacting control system. Automatica 7, 691–701 (1971)

    Article  MATH  Google Scholar 

  18. Palmor, Z.J., Halevi, Y., Efrati, T.: A general and exact method for determining limit cycles in decentralized relay systems. Automatica 31(9), 1333–1339 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Penttinen, J., Koivo, H.N.: Multivariable tuning regulators for unknown systems. Automatica 16, 393–398 (1980)

    Article  Google Scholar 

  20. Rivera, D.E., Morari, M., Skogestad, S.: Internal model control. 4. PID controller design. Ind. Eng. Chem. Process Des. Dev. 25, 252–265 (1986)

    Article  Google Scholar 

  21. Rosenbrok, H.H.: Computer Aided Control System Design. Academic Press, New York (1974)

    Google Scholar 

  22. Sandelin, P.M., Toivonen, H.T., Osters, M., Waller, K.V.: Robust multi-objective linear quadratic control of distillation using low-order controllers. Chem. Eng. Sci. 46(11), 2815–2827 (1991)

    Article  Google Scholar 

  23. Skofestad, S., Lundström, P., Jacobsen, E.W.: Selecting the best distillation control configuration. AIChE J. 36, 753–764 (1990)

    Article  Google Scholar 

  24. Wahab, N.A., Katebi, M.R., Balderud, J.: Multivariable PID control design for activated sludge process with nitrification and denitrification. Biochem. Eng. J. 42, 239–248 (2009)

    Article  Google Scholar 

  25. Wang, F., Wu, T.Y.: Multiloop PID controllers tuning by goal attainment trade-off method. Trans. Inst. Meas. Control 17(1), 27–34 (1995)

    Article  Google Scholar 

  26. Wang, Q., Zou, B., Lee, T., Bi, Q.: Auto-tuning of multivariable PID controllers from decentralized relay feedback. Automatica 33(3), 319–330 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yanchevsky, A.E.: Optimal decentralised controller design for multivariable plants. Int. J. Syst. Sci. 18(1), 177–187 (1987)

    Article  Google Scholar 

  28. Yu, C.C.: Autotuning of PID Controllers. Advances in Industrial Control. Springer, London (1999)

    Google Scholar 

  29. Yusof, R., Omatu, S., Khalid, M.: Self-tuning PID control: A multivariable derivation and application. Automatica 30(12), 1975–1981 (1994)

    Article  MATH  Google Scholar 

  30. Zhuang, M., Atherton, D.P.: PID controller design for a TITO system. IEE Proc., Control Theory Appl. 141(2), 111–120 (1994)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

I would like to express my thanks and gratitude to all my students and colleagues who carried out the work reported here, in particular, Professor Michael Johnson, Dr. Peter Martin, Dr. Norhalisa Wahab, Dr. Jonas Balderud, Dr. M. Moradi and Mr. Mahdi Elkawafi.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Katebi, R. (2012). Robust Multivariable Tuning Methods. In: Vilanova, R., Visioli, A. (eds) PID Control in the Third Millennium. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-2425-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2425-2_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2424-5

  • Online ISBN: 978-1-4471-2425-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics