Robustness in PID Control

  • Ramon Vilanova
  • Víctor M. Alfaro
  • Orlando Arrieta
Part of the Advances in Industrial Control book series (AIC)


Robustness should not be taken for granted. After decades of gaining acceptance, Robust Control Theory has permeated practically every approach to controller design. Of course, PID cannot be an exception. The introduction of robustness considerations within the PID paradigm has created an active focus of research. During the last decades, a number of approaches have emerged introducing new considerations into the design of PID controllers by considering the robustness as a design specification. Of course, this can take several forms and formulations. This chapter specially concentrates on those approaches that lead to robust tuning rules. The use of different robustness measures is presented, and the importance of ensuring the specifications are met. This fact allows for a posterior analysis of the well-known (but not quantitatively analyzed) Robustness/Performance tradeoff. A possible route to this analysis is presented at the end of the chapter as a suggestion on how to approach this problem and have a clearer idea of the price paid for increasing the demand for robustness.


Sensitivity Function Phase Margin Internal Model Control Multiple Objective Optimization Robustness Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has received financial support from the Spanish CICYT program under grant DPI2010-15230. Also, the financial support from the University of Costa Rica and from the MICIT and CONICIT of the Government of the Republic of Costa Rica is greatly appreciated.


  1. 1.
    Alcántara, S., Pedret, C., Vilanova, R.: On the model matching approach to PID design: analytical perspective for robust servo/regulator tradeoff tuning. J. Process Control 20, 596–608 (2010) CrossRefGoogle Scholar
  2. 2.
    Alcántara, S., Pedret, C., Vilanova, R., Zhang, W.D.: Simple analytical min-max model matching approach to robust proportional-integrative-derivative tuning with smooth set-point response. Ind. Eng. Chem. Res. 49, 690–700 (2010) CrossRefGoogle Scholar
  3. 3.
    Alcántara, S., Zhang, W.D., Pedret, C., Vilanova, R., Skogestad, S.: IMC-like analytical \(\mathcal{H}_{\infty}\) design with S/SP mixed sensitivity consideration: utility in PID tuning guidance. J. Process Control 21, 554–563 (2011) CrossRefGoogle Scholar
  4. 4.
    Alfaro, V.M.: Low-order models identification from process reaction curve. Cienc. Tecnol. 24(2), 197–216 (2006) (in Spanish) MathSciNetGoogle Scholar
  5. 5.
    Alfaro, V.M., Méndez, V., Vilanova, R., Lafuente, J.: Performance/Robustness tradeoff analysis of PI/PID servo and regulatory control systems. In: IEEE International Conference on Industrial Technology (ICIT2010), Viña del Mar, Valparaiso, Chile, 14–17 March 2010 Google Scholar
  6. 6.
    Alfaro, V.M., Vilanova, R., Arrieta, O.: Analytical robust tuning of PI controllers for first-order-plus-dead-time processes. In: 13th IEEE International Conference on Emerging Technologies and Factory Automation, Hamburg, Germany, 15–18 September 2008 Google Scholar
  7. 7.
    Alfaro, V.M., Vilanova, R., Arrieta, O.: NORT: a non-oscillatory robust tuning approach for 2-DoF PI controllers. In: 18th International Conference on Control Applications part of the IEEE Multi-Conference on Systems and Control (CCA2009), Saint Petersburg, Russia, 8–9 July 2009 Google Scholar
  8. 8.
    Alfaro, V.M., Vilanova, R., Arrieta, O.: A single-parameter robust tuning approach for two-degree-of-freedom PID controllers. In: European Control Conference (ECC09), Budapest, Hungary, pp. 1788–1793, 23–26 August 2009 Google Scholar
  9. 9.
    Alfaro, V.M., Vilanova, R., Arrieta, O.: Maximum sensivity based robust tuning for two-degree-of-freedom proportional-integral controllers. Ind. Eng. Chem. Res. 49, 5415–5423 (2010) CrossRefGoogle Scholar
  10. 10.
    Ali, A., Mahi, S.: PI/PID controller design based on IMC and percentage overshoot specification to controller setpoint change. ISA Trans. 48, 10–15 (2009) CrossRefGoogle Scholar
  11. 11.
    Arrieta, O., Vilanova, R.: Simple PID tuning rules with guaranteed M s robustness achievement. In: 18th IFAC World Congress, Milano, Italy, 28 August–2 September 2011 Google Scholar
  12. 12.
    Åström, K.J., Hägglund, T.: Automatic tuning of simple regulators with specifications on phase and amplitude margin. Automatica 20, 645–651 (1984) MATHCrossRefGoogle Scholar
  13. 13.
    Åström, K.J., Hägglund, T.: PID Controllers: Theory, Design, and Tuning. Instrument of Society of America (1995) Google Scholar
  14. 14.
    Åström, K.J., Hägglund, T.: Benchmark systems for PID control. In: IFAC Digital Control: Past, Present and Future of PID Control (PID’00), Terrassa, Spain (2000) Google Scholar
  15. 15.
    Åström, K.J., Hägglund, T.: Revisiting the Ziegler–Nichols step response method for PID control. J. Process Control 14, 635–650 (2004) CrossRefGoogle Scholar
  16. 16.
    Åström, K.J., Hägglund, T.: Advanced PID Control. ISA—The Instrumentation, Systems, and Automation Society (2006) Google Scholar
  17. 17.
    Åström, K.J., Panagopoulos, H., Hägglund, T.: Design of PI controllers based on non-convex optimization. Automatica 34, 585–601 (1998) MATHCrossRefGoogle Scholar
  18. 18.
    Babb, M.: Pneumatic instruments gave birth to automatic control. Control Eng. 37(12), 20–22 (1990) Google Scholar
  19. 19.
    Bar-on, J.R., Jonckheere, E.A.: Phase margins for multivariable control systems. Int. J. Control 52(2), 485–498 (1998) MathSciNetCrossRefGoogle Scholar
  20. 20.
    Bennett, S.: The past of PID controllers. In: IFAC Digital Control: Past, Present and Future of PID Control, Terrassa, Spain (2000) Google Scholar
  21. 21.
    Chen, D., Seborg, D.E.: PI/PID controller design based on direct synthesis and disturbance rejection. Ind. Eng. Chem. Res. 41(19), 4807–4822 (2002) CrossRefGoogle Scholar
  22. 22.
    Chien, I.L., Fruehauf, P.S.: Consider IMC tuning to improve performance. Chem. Eng. Prog. 86(10), 33–41 (1990) Google Scholar
  23. 23.
    Chien, I.L., Hrones, J.A., Reswick, J.B.: On the automatic control of generalized passive systems. Trans. ASME 74, 175–185 (1952) Google Scholar
  24. 24.
    Cohen, G.H., Coon, G.A.: Theoretical considerations of retarded control. Trans. Am. Soc. Mech. Eng. 75, 827–834 (1953) Google Scholar
  25. 25.
    Dahlin, E.G.: Designing and tuning digital controllers. Instrum. Control Syst. 41(6), 77–81 (1968) Google Scholar
  26. 26.
    Grimble, M.J.: Robust Industrial Control. Optimal Design Approach for Polynomial Systems. Prentice-Hall International, Englewood Cliffs (1994) Google Scholar
  27. 27.
    Hägglund, T., Åström, K.J.: Revisiting the Ziegler–Nichols tuning rules for PI control. Asian J. Control 4, 354–380 (2002) Google Scholar
  28. 28.
    Hägglund, T., Åström, K.J.: Revisiting the Ziegler–Nichols tuning rules for PI control—Part II, the frequency response method. Asian J. Control 6, 469–482 (2004) CrossRefGoogle Scholar
  29. 29.
    Herreros, A., Baeyens, E., Peran, J.R.: Design of PID-type controllers using multiobjective genetic algorithms. ISA Trans. 41(4), 457–472 (2002) CrossRefGoogle Scholar
  30. 30.
    Ho, W.K., Gan, O.P., Tay, E.B., Ang, E.L.: Performance and gain and phase margins of well-known PID tuning formulas. IEEE Trans. Control Syst. Technol. 4(11), 473–477 (1996) CrossRefGoogle Scholar
  31. 31.
    Ho, W.K., Hang, C.C., Cao, L.S.: Tuning PID controllers based on gain and phase margin specifications. Automatica 31(3), 497–502 (1995) MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Ho, W.K., Hang, C.C., Zhou, J.H.: Performance and gain and phase margins of well-known PI tuning formulas. IEEE Trans. Control Syst. Technol. 3(2), 245–248 (1995) CrossRefGoogle Scholar
  33. 33.
    Ho, W.K., Lee, T.H., Gan, O.P.: Tuning of multiloop PID controllers based on gain and phase margin specifications. Ind. Eng. Chem. Res. 36(6), 2231–2238 (1997) CrossRefGoogle Scholar
  34. 34.
    Ho, W.K., Lim, K.L., Hang, C.C., Ni, L.Y.: Getting more phase margin and performance out of PID controllers. Automatica 35, 1579–1585 (1999) MATHCrossRefGoogle Scholar
  35. 35.
    Huang, H.-P., Jeng, J.-C.: Monitoring and assessment of control performance for single loop systems. Ind. Eng. Chem. Res. 41, 1297–1309 (2002) CrossRefGoogle Scholar
  36. 36.
    Johnson, M., Moradi, M.H.: PID Control: New Identification and Design Methods. Springer, London (2005) Google Scholar
  37. 37.
    Kristiansson, B.: PID controllers, design and evaluation. PhD thesis, Control and Automation Laboratory, Department of Signals and Systems, Chalmers University of Technology, Göteborg, Sweden (2003) Google Scholar
  38. 38.
    Kristiansson, B., Lennartson, B.: Evaluation and simple tuning of PID controllers with high-frequency robustness. J. Process Control 16, 91–102 (2006) CrossRefGoogle Scholar
  39. 39.
    Kristiansson, B., Lennartson, B.: Robust tuning of PI and PID controllers. IEEE Control Syst. Mag. 26(1), 69 (2006) MathSciNetCrossRefGoogle Scholar
  40. 40.
    Leva, A., Colombo, A.M.: On the IMC-based synthesis of the feedback block of ISA PID regulators. Trans. Inst. Meas. Control 26(5), 417–440 (2004) CrossRefGoogle Scholar
  41. 41.
    Morari, M., Zafiriou, E., Economou, C.G.: Robust Process Control. Springer, Berlin (1988) Google Scholar
  42. 42.
    O’Dwyer, A.: Handbook of PI and PID Controller Tuning Rules, 3rd edn. Imperial College Press, London (2009) CrossRefGoogle Scholar
  43. 43.
    Persson, P.: Towards autonomous PID control. PhD thesis, Department of Automatic Control, Lund Institute of Technology, Lund, Sweden (1992) Google Scholar
  44. 44.
    Rivera, D.E., Morari, M., Skogestad, S.: Internal model control 4. PID controller design. Ind. Eng. Chem. Res. 25, 252–265 (1986) Google Scholar
  45. 45.
    Shen, J.-C.: New tuning method for PID controller. ISA Trans. 41, 473–484 (2002) CrossRefGoogle Scholar
  46. 46.
    Shinskey, F.G.: Process Control Systems: Application, Design, and Tuning. 3rd edn. McGraw-Hill, New York (1988) Google Scholar
  47. 47.
    Skogestad, S.: Simple analytic rules for model reduction and PID controller tuning. J. Process Control 13, 291–309 (2003) CrossRefGoogle Scholar
  48. 48.
    Smith, A.C., Corripio, B.A.: Principles and Practice of Automatic Process Control. Wiley, New York (1985) Google Scholar
  49. 49.
    Tan, W., Liu, J., Chen, T., Marquez, H.J.: Comparison of some well-known PID tuning formulas. Comput. Chem. Eng. 30, 1416–1423 (2006) CrossRefGoogle Scholar
  50. 50.
    Tavakoli, S., Tavakoli, M.: Optimal tuning of PID controllers for first order plus time delay models using dimensional analysis. In: The Fourth International Conference on Control and Automation (ICCA’03), Montreal, Canada, June 2003 Google Scholar
  51. 51.
    Tavakoli, S., Griffin, I., Fleming, P.J.: Robust PI controller for load disturbance rejection and setpoint regulation. In: IEEE Conference on Control Applications, Toronto, Canada, 28–31 August 2005 Google Scholar
  52. 52.
    Tavakoli, S., Griffin, I., Fleming, P.J.: Multi-objetive optimization approach to the PI tuning problem. In: IEEE Congress on Evolutionary Computing (CEC2007), pp. 3165–3171 (2007) CrossRefGoogle Scholar
  53. 53.
    Toivonen, H.T., Totterman, S.: Design of fixed-structure controllers with frequency-domain criteria: a multiobjective optimisation approach. IEE Proc. D, Control Theory Appl. 153(1), 46–52 (2006) CrossRefGoogle Scholar
  54. 54.
    Vidyasagar, M.: Control System Synthesis. A Factorization Approach. MIT Press, Cambridge (1985) MATHGoogle Scholar
  55. 55.
    Vilanova, R.: IMC based robust PID design: tuning guidelines and automatic tuning. J. Process Control 18, 61–70 (2008) CrossRefGoogle Scholar
  56. 56.
    Vilanova, R., Alfaro, V.M., Arrieta, O., Pedret, C.: Analysis of the claimed robustness for PI/PID robust tuning rules. In: 18th IEEE Mediterranean Conference on Control and Automation (MED10), Marrakech, Morocco, 23–25 June 2010 Google Scholar
  57. 57.
    Visioli, A.: Optimal tuning of PID controllers for integral and unstable processes. IEE Proc., Control Theory Appl. 148(2), 180–184 (2001) CrossRefGoogle Scholar
  58. 58.
    Visioli, A.: Practical PID Control. Advances in Industrial Control Series. Springer, Berlin (2006) MATHGoogle Scholar
  59. 59.
    Wang, Q.-G.: Decoupling Control. Springer, New York (2003) MATHGoogle Scholar
  60. 60.
    Wang, Q.-G., He, Y., Ye, Z., Lin, C., Hang, C.-C.: On loop phase margins of multivariable control systems. J. Process Control 18(2), 202–211 (2008) CrossRefGoogle Scholar
  61. 61.
    Wang, Q.-G., Ye, Z., Cai, W.-J., Hang, C.-C.: PID Control for Multivariable Processes. Lecture Notes in Control and Information Sciences. Springer, Berlin (2008) MATHGoogle Scholar
  62. 62.
    Zames, G., Francis, B.A.: Feedback, minmax sensitivity and optimal robustness. IEEE Trans. Autom. Control 28, 585–601 (1983) MathSciNetMATHCrossRefGoogle Scholar
  63. 63.
    Zhuang, M., Atherton, D.P.: Automatic tuning of optimum PID controllers. IEE Proc. Part D. Control Theory Appl. 140(3), 216–224 (1993) MATHCrossRefGoogle Scholar
  64. 64.
    Ziegler, J.G., Nichols, N.B.: Optimum settings for automatic controllers. Trans. Am. Soc. Mech. Eng. 64, 759–768 (1942) Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Ramon Vilanova
    • 1
  • Víctor M. Alfaro
    • 2
  • Orlando Arrieta
    • 2
  1. 1.Departament de Telecomunicació i d’Enginyeria de Sistemes, Escola d’EnginyeriaUniversitat Autònoma de BarcelonaBarcelonaSpain
  2. 2.Departamento de Automática, Escuela de Ingeniería EléctricaUniversidad de Costa RicaSan JoséCosta Rica

Personalised recommendations