Predictive Control Approaches for PID Control Design and Its Extension to Multirate System

Part of the Advances in Industrial Control book series (AIC)


Proportional-Integral-Derivative (PID) control is the most widely used control method. Since, PID control performance can be adjusted by tuning the PID parameters, the selection of the PID parameters is very important, but optimal PID parameters are not easily obtained. Advanced control has high potential, but on-site engineers prefer PID control to advanced control. Hence, advanced control needs to be achieved by PID control.

In this chapter, generalized predictive control (GPC) is attained by PID control. First, the technique that GPC law is approximated by a PID control law is introduced. Next, the obtained GPC-based PID control is applied to a weigh feeder. Finally, the design method of a GPC-based PID control system is extended to a multirate system in which the sampling interval is an integer multiple of the update interval.


Control Input Plant Output Reference Input Proportional Gain Generalize Predictive Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author would like to express his sincere gratitude to Professor Akira Inoue and Dr. Shiro Masuda for their helpful suggestions and valuable discussions.

The author is grateful to Professor Toru Yamamoto and Professor Sirish L. Shah for their detailed comments and suggestions.

The author would like to thank Professor Koichi Kameoka and Yamato Scale Co. Ltd. for providing the experimental setup.


  1. 1.
    Albertos, P.: Block multirate input-output model for sampled-data control systems. IEEE Trans. Autom. Control 35(9), 1085–1088 (1990) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Araki, M., Yamamoto, K.: Multivariable multirate sampled-data systems: state-space description, transfer characteristics, and Nyquist criterion. IEEE Trans. Autom. Control AC-31(2), 145–154 (1986) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Asano, M., Yamamoto, T.: A design of self-tuning predictive PID controllers. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E84-A(7), 1779–1783 (2001) Google Scholar
  4. 4.
    Asano, M., Yamamoto, T., Oki, T., Kaneda, M.: A design of neural-net based predictive PID controllers. In: Proc. of IEEE Conference on Systems, Man and Cybernetics, pp. 1113–1118 (1999) Google Scholar
  5. 5.
    Åström, K.J., Hägglund, T.: PID Controllers: Theory, Design and Tuning, 2nd edn. Instrument Society of America, Research Triangle Park (1995) Google Scholar
  6. 6.
    Camacho, E.F., Bordons, C.: Model Predictive Control, 2nd edn. Springer, Berlin (2000) Google Scholar
  7. 7.
    Chen, T., Francis, B.: Optimal Sampled-data Control Systems. Springer, Berlin (1995) MATHGoogle Scholar
  8. 8.
    Clarke, D.W.: Self-tuning control of nonminimum-phase systems. Automatica 20(5), 501–517 (1984) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Clarke, D.W., Mohtadi, C., Tuffs, P.S.: Generalized predictive control—part I and II. Automatica 23(2), 137–160 (1987) MATHCrossRefGoogle Scholar
  10. 10.
    Deng, M., Inoue, A., Ishibashi, N., Yanou, A.: Application of an anti-windup multivariable continuous-time generalised predictive control to a temperature control of an aluminium plate. Int. J. Model. Identif. Control 2(2), 130–137 (2007) CrossRefGoogle Scholar
  11. 11.
    Ding, F.: Generalized yule-walker and two-stage identification algorithms for dual-rate systems. J. Control Theory Appl. 4, 338–342 (2006) MATHCrossRefGoogle Scholar
  12. 12.
    Goodwin, G.C., Sin, K.S.: Adaptive Filtering Prediction and Control. Prentice-Hall, New York (1984) MATHGoogle Scholar
  13. 13.
    Haefner, H.: Advanced weigh feeder system for optimization of the kiln system. World Cem. 27(6), 19–27 (1996) Google Scholar
  14. 14.
    Heinrici, H.: Continuous weighing and feeding systems—an integral component in process engineering. Aufbereit.-Tech. 41(8), 376–383 (2000) (in German) Google Scholar
  15. 15.
    Hopkins, M.: Loss in weight feeder systems. Meas. Control 39(8), 237–240 (2006) Google Scholar
  16. 16.
    Inoue, A., Yanou, A., Hirashima, Y.: A design of a strongly stable generalized predictive control using coprime factorization approach. In: Proc. of the American Control Conference, San Diego, pp. 652–656 (1999) Google Scholar
  17. 17.
    Ishitobi, M., Kawanaka, M., Nishi, H.: Ripple-suppressed multirate adaptive control. In: Proc. of 15th IFAC World Congress, pp. 327–332 (2002) Google Scholar
  18. 18.
    Izadi, I., Zhao, Q., Chen, T.: An h approach to fast rate fault detection for multirate sampled-data systems. J. Process Control 16, 651–658 (2006) CrossRefGoogle Scholar
  19. 19.
    Johnson, M.A., Moradi, M.H. (eds.): PID Control—New Identification and Design Methods. Springer, London (2005) Google Scholar
  20. 20.
    Kwok, K., Shah, S.: Long-range predictive control with steady state error weighting. Int. J. Adapt. Control Signal Process. 11, 201–215 (1997) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Liang, S., Ishitobi, M.: Properties of zeros of discretised system using multirate input and hold. IEE Proc., Control Theory Appl. 151(2), 180–184 (2004) CrossRefGoogle Scholar
  22. 22.
    Maciejowski, J.M.: Predictive Control with Constraints. Prentice Hall, New York (2002) Google Scholar
  23. 23.
    Miller, R.M., Shah, S.L., Wood, R.K., Kwok, E.K.: Predictive PID. ISA Trans. 38, 11–23 (1999) CrossRefGoogle Scholar
  24. 24.
    Moradi, M.H., Johnson, M.A., Katebi, M.R.: Predictive PID control. In: Johnson, M.A., Moradi, M.H. (eds.) PID Control—New Identification and Design Methods, pp. 473–524. Springer, Berlin (2005) Google Scholar
  25. 25.
    O’Dwyer, A.: Hand Book of PI and PID Controller Tuning Rules. Imperial College Press, Singapore (2003) Google Scholar
  26. 26.
    Omatu, S., Yamamoto, T. (eds.): Self-tuning Control. The Society of Instrument and Control Engineers (1996) (in Japanese) Google Scholar
  27. 27.
    Park, B.G., Kwon, W.H., Park, S.H.: Discrete two degrees of freedom PID controller based on the GPC. In: SICE ’95, Sapporo, pp. 1251–1255 (1995) Google Scholar
  28. 28.
    Sato, T.: Design method of PID controller in multirate system. Dyn. Contin. Discrete Impuls. Syst. 16(1), 123–138 (2009) MathSciNetMATHGoogle Scholar
  29. 29.
    Sato, T.: Strongly stable GPC-based PID controller. Int. J. Adv. Mechatron. Syst. 1(3), 183–193 (2009) CrossRefGoogle Scholar
  30. 30.
    Sato, T.: Design of a GPC-based PID controller for controlling a weigh feeder. Control Eng. Pract. 18(2), 105–113 (2010) CrossRefGoogle Scholar
  31. 31.
    Sato, T., Inoue, A.: Improvement of tracking performance in self-tuning PID controller based on generalized predictive control. Int. J. Innov. Comput. Inf. Control 2(3), 491–503 (2006) Google Scholar
  32. 32.
    Sato, T., Inoue, A.: Generalized predictive control in fast-rate single-rate and dual-rate systems. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E90-A(11), 2616–2619 (2007) CrossRefGoogle Scholar
  33. 33.
    Sato, T., Kameoka, K.: Self-tuning control of a weigh feeder. Trans. Soc. Instrum. Control Eng. 43(6), 522–524 (2007) (in Japanese) Google Scholar
  34. 34.
    Sato, T., Inoue, A., Yamamoto, T., Shah, S.L.: Self-tuning PID controllers based on the strongly stable generalized minimum variance control law. In: IFAC Workshop on Digital Control: Past, Present and Future of PID Control, Terrassa, pp. 511–516 (2000) Google Scholar
  35. 35.
    Sato, T., Inoue, A., Yamamoto, T.: Improvement of tracking performance in designing a GPC-based PID controller using a time-varying proportional gain. IEEJ Trans. Electr. Electron. Eng. 1(4), 438–441 (2006) CrossRefGoogle Scholar
  36. 36.
    Sato, T., Inoue, A., Yamamoto, T.: Gpc-based PID controller using a stable time-varying proportional gain. In: Proc. of the 2007 IEEE Int. Conf. on Networking, Sensing and Control, pp. 536–541 (2007) CrossRefGoogle Scholar
  37. 37.
    Sato, T., Inoue, A., Yamamoto, T.: Two-degree-of-freedom PID controller based on extended generalized minimum variance control. Int. J. Innov. Comput. Inf. Control 4(12), 3111–3122 (2008) Google Scholar
  38. 38.
    Scattolini, R.: Multi-rate self-tuning predictive controller for multi-variable systems. Int. J. Syst. Sci. 23(8), 1347–1359 (1992) MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Sheng, J., Chen, T., Shah, S.L.: Multirate generalized predictive control for sampled-data systems. Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 8(4), 485–499 (2001) MathSciNetMATHGoogle Scholar
  40. 40.
    Silva, G.J., Datta, A., Bhattacharyya, S.P.: PID Controllers for Time-Delay Systems. Birkhäuser, Boston (2005) MATHGoogle Scholar
  41. 41.
    Smith, O.J.: Closer control of loops with dead-time. Chem. Eng. Prog. 53, 217–219 (1957) Google Scholar
  42. 42.
    Smith, O.J.: A controller to overcome dead-time. ISA J. 6, 28–33 (1959) Google Scholar
  43. 43.
    Sunan, H., King, T.K., Hen, L.T.: Applied Predictive Control. Springer, London (2002) Google Scholar
  44. 44.
    Tan, K.K., Huang, S.N., Lee, T.H.: Development of a GPC-based PID controller for unstable systems with deadtime. ISA Trans. 39, 57–70 (2000) CrossRefGoogle Scholar
  45. 45.
    Tan, K.K., Lee, T.H., Leu, F.M.: Predictive PI versus smith control for dead-time compensation. ISA Trans. 40, 17–29 (2001) CrossRefGoogle Scholar
  46. 46.
    Tan, K.K., Lee, T.H., Huang, S.N., Leu, F.M.: PID control design based on a GPC approach. Ind. Eng. Chem. Res. 41(8), 2013–2022 (2002) CrossRefGoogle Scholar
  47. 47.
    Tan, K.K., Lee, T.H., Leu, F.M.: Optimal smith-predictor design based on a GPC approach. Ind. Eng. Chem. Res. 41(5), 1242–1248 (2002) CrossRefGoogle Scholar
  48. 48.
    Tangirala, A.K., Li, D., Patwardhan, R., Shah, S.L., Chen, T.: Issues in multirate process control. In: Proc. of the American Control Conference, pp. 2771–2775 (1999) Google Scholar
  49. 49.
    Tangirala, A.T., Li, D., Patwardhan, R.S., Shah, S.L., Chen, T.: Ripple-free conditions for lifted multirate control systems. Automatica 37(10), 1637–1645 (2001) MATHCrossRefGoogle Scholar
  50. 50.
    Usui, K.: Continuous flow rate control system with fuzzy controller. In: International Symposium on Measurement of Force and Mass, pp. 79–84 (1992) Google Scholar
  51. 51.
    Vermylen, J.: Controllers assure consistency in batch mixing of pasta dough. Food Process. 46(10), 138–139 (1985) Google Scholar
  52. 52.
    Vidyasagar, M.: A Factorization Approach. Control System Synthesis. The MIT Press, Cambridge (1985) Google Scholar
  53. 53.
    Visioli, A.: Practical PID Control. Springer, London (2006) MATHGoogle Scholar
  54. 54.
    Wang, X., Huang, B., Chen, T.: Multirate minimum variance control design and control performance assessment: A data-driven subspace approach. IEEE Trans. Control Syst. Technol. 15(1), 65–74 (2007) CrossRefGoogle Scholar
  55. 55.
    Yamamoto, T., Kaneda, M.: A design of self-tuning PID controllers based on the generalized minimum variance control law. Trans. Inst. Syst. Control Inf. Eng. 11(1), 1–9 (1998) (in Japanese) Google Scholar
  56. 56.
    Yamamoto, T., Inoue, A., Shah, S.L.: Generalized minimum variance self-tuning pole-assignment controller with a PID structure. In: Proc. of 1999 IEEE Int Conf. on Control Applications, Hawaii, pp. 125–130 (1999) Google Scholar
  57. 57.
    Yanou, A., Inoue, A.: An extension of multivariable continuous-time generalized predictive control by using coprime factorization approach. In: Proc. of SICE Annual Conference, Fukui, pp. 3018–3022 (2003) Google Scholar
  58. 58.
    Yu, C.C.: Autotuning of PID Controllers, 2nd edn. Springer, London (2006) Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Division of Mechanical System, Department of Mechanical Engineering, School of EngineeringUniversity of HyogoHimejiJapan

Personalised recommendations