Skip to main content

Benchmarking and Tuning PID Controllers

  • Chapter
PID Control in the Third Millennium

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

It is important to be able to assess the quality of control provided by PID controllers or indeed by any classical or advanced control method. Since many PID controllers are set up using intuition or empirical tuning rules, it is particularly important that PID designs can be benchmarked and the quality of control assessed. Furthermore, benchmarking methods can provide guidance for tuning controllers.

The most common performance measures used for PID control include step-response tracking performance, disturbance-rejection performance properties and the stochastic performance in regulating or tracking processes.

With respect to the regulating performance, assessment and benchmarking methods can mostly be considered part of the minimum variance or generalised minimum variance family of techniques. There are commercial tools which use such methods, but these are often based on rather simplistic strategies. One of the advances made in the last decade has been the development of so-called restricted structure benchmarking which provides a figure of merit which is much more representative of what might be achievable if the controller is tuned optimally.

With respect to step-input and disturbance rejection performance, the benchmarking should ideally determine how well the output of the system follows a step change in the system inputs (either a set-point or a disturbance change). This suggests a comparison with optimum tracking controllers, of which the most representative would be a model-based predictive controller. Thus, in the second part of this chapter the performance of a PID controller will be compared with the performance of a predictive controller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad, M., Benson, R.: Benchmarking in the process industries. In: IChemE. The Cromwell Press, Trowbridge (1999)

    Google Scholar 

  2. Anderson, B.D.O., Lin, Y.: Controller reduction concepts and approaches. IEEE Trans. Autom. Control 34, 802–812 (1989)

    Article  MATH  Google Scholar 

  3. Andersen, B., Pettersen, P.G.: The Benchmarking Handbook. Chapman and Hall, New York (1996)

    Google Scholar 

  4. Calligaris, M., Johnson, M.A.: Power system studies and new benchmarking concepts. In: Proc. IASTED Int. Conf. on Control and Applications, Banff, Canada, pp. 211–216 (1999)

    Google Scholar 

  5. Calligaris, M., Johnson, M.A.: Benchmarking for hierarchical voltage control. In: IFAC Symp. on Power Plants and Power Systems Control 2000, Brussels, Belgium (2000)

    Google Scholar 

  6. Clarke, D.W., Hastings-James, R.: Design of digital controllers for randomly disturbed systems. Proc. IEEE 118(10), 1503–1506 (1971)

    Google Scholar 

  7. Codling, S.: Best Practice Benchmarking. Uniskill Ltd. (1992)

    Google Scholar 

  8. Desborough, L.D., Harris, T.J.: Performance assessment measures for univariate feedback control. Can. J. Chem. Eng. 70, 1186–1197 (1992)

    Article  Google Scholar 

  9. Desborough, L.D., Harris, T.J.: Performance assessment measures for univariate feedback/feedforward control. Can. J. Chem. Eng. 71, 605–615 (1993)

    Article  Google Scholar 

  10. Desborough, L.D., Harris, T.J.: Control performance assessment. Pulp Pap. Can. 95(11), 441–443 (1994)

    Google Scholar 

  11. Grimble, M.J.: Generalised minimum variance control law revisited. Optim. Control Appl. Methods 9, 63–77 (1988)

    Article  MATH  Google Scholar 

  12. Grimble, M.J.: Restricted structure controller tuning and performance assessment. IEE Proc. Part D (1992)

    Google Scholar 

  13. Grimble, M.J.: Robust Industrial Control: Optimal Design Approach for Polynomial Systems. Prentice Hall, New York (1994)

    Google Scholar 

  14. Grimble, M.J.: Restricted structure feedforward stochastic optimal control. In: CDC 99, Phoenix, Arizona (1999)

    Google Scholar 

  15. Grimble, M.J.: Restricted structure LQG optimal control for continuous-time systems. IEE Proc. Control Theory Appl. 147(2), 185–195 (2000)

    Article  MathSciNet  Google Scholar 

  16. Grimble, M.J.: Industrial Control Systems Design. Wiley, Chichester (2000)

    Google Scholar 

  17. Grimble, M.J.: Restricted structure optimal linear pseudo-state filtering for discrete-time systems. In: American Control Conference, Chicago (2000)

    Google Scholar 

  18. Hangstrup, M., Ordys, A.W., Grimble, M.J.: Dynamic algorithm of LQGPC predictive control. In: 4th International Symposium on Methods and Models in Automation and Robotics, Miedzyzdroje, August 1997

    Google Scholar 

  19. Harris, T.: Assessment of closed loop performance. Can. J. Chem. Eng. 67, 856–861 (1989)

    Article  Google Scholar 

  20. Huang, B., Shah, S.L., Kwok, E.K.: Good, bad or optimal, Performance assessment of multivariable processes. Automatica 33(6), 1175–1183 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Huang, B., Shah, S.L.: Performance Assessment of Control Loops: Theory and Applications. Springer, London (1999)

    Book  Google Scholar 

  22. Hyland, D.C., Bernstein, D.A.: The optimal projection equations for model reduction and the relationships among the methods of Wilson, Skelton and Moore. IEEE Trans. Autom. Control 30, 1201–1211 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Levine, W.S. (ed.): The Control Handbook. CRC Press, Boca Raton (1996), Chap. 62

    MATH  Google Scholar 

  24. Moden, P.E., Soderstrom, T.: On the achievable accuracy in stochastic control. In: 17th IEEE Conf on Decision and Control, pp. 490–495 (1978)

    Google Scholar 

  25. Ordys, A.W.: Model-system parameters mismatch in GPC control. Int. J. Adapt. Control Signal Process. 7, 239–253 (1993)

    Article  MATH  Google Scholar 

  26. Ordys, A.W., Clarke, D.W.: A state-space description for GPC controllers. Int. J. Syst. Sci. 24(9) (1993)

    Google Scholar 

  27. Ordys, A.W., Uduehi, D., Johnson, M.: Process Control Performance Assessment. From Theory to Implementation. Monograph Series: Advances in Industrial Control. Springer, London (2007). ISBN 978-1-84628-623-0

    Book  MATH  Google Scholar 

  28. Rivera, D.E., Morari, M.: Control relevant model reduction problems for SISO H2, H∞ and μ controller synthesis. Int. J. Control 46(2), 505–527 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rivera, D.E., Morari, M.: Low order SISO controller tuning methods for the H2, H∞ and μ objective functions. Automatica 26(2), 361–369 (1990)

    Article  MATH  Google Scholar 

  30. Rolstadas, A.: Benchmarking—Theory and Practice. Chapman and Hall, London (1995)

    Google Scholar 

  31. Saeki, M., Kimura, J.: Design method of robust PID controller and CAD system. In: 11th IFAC Symposium on System Identification, vol. 3, pp. 1587–1593 (1997)

    Google Scholar 

  32. Saeki, M., Aimoto, K.: PID controller optimization for H∞ control by linear programming. Int. J. Robust Nonlinear Control 10, 83–99 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shakouri, P., Ordys, A., Askari, M., Laila, D.S.: Longitudinal vehicle dynamics using Simulink/Matlab. In: UKACC International Conference CONTROL 2010, Coventry, 7–10 September 2010

    Google Scholar 

  34. Shakouri, P., Ordys, A., Laila, D.S., Askari, M.: Adaptive cruise control system: Comparing gain-scheduling PI and LQ controllers. In: IFAC Word Congress, Milano, 28 August–2 September 2011

    Google Scholar 

  35. Stanfelj, N., Marlin, T.E., MacGregor, J.F.: Monitoring and diagnosing process control performance: the single loop case. Ind. Eng. Chem. Res. 32, 301–314 (1993)

    Article  Google Scholar 

  36. Thornhill, N.F., Oettinger, M., Fedenczuk, P.: Refinery-wide control loop performance assessment. J. Process Control 9, 109–124 (1999)

    Article  Google Scholar 

  37. Uduehi, D., Ordys, A.: Multivariable PID controller design using online generalised predictive control optimisation. In: IEEE Conference on Control Applications & IEEE Conference on Computer Aided Control Systems Design, Glasgow, 17–20 September 2002

    Google Scholar 

  38. Uduehi, D., Ordys, A., Grimble, M.: A generalised predictive control benchmark index for SISO systems. In: IEEE Control and Decision Conference, Las Vegas, December 2002

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Payman Shakouri for a help in numerical examples related to the Adaptive Cruise Control system.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Ordys, A.W., Grimble, M.J. (2012). Benchmarking and Tuning PID Controllers. In: Vilanova, R., Visioli, A. (eds) PID Control in the Third Millennium. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-2425-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2425-2_13

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2424-5

  • Online ISBN: 978-1-4471-2425-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics