Identification for PID Control

  • Kostas S. Tsakalis
  • Sachi Dash
Part of the Advances in Industrial Control book series (AIC)


In this study, we address issues arising in system identification-based plant modeling for the purpose of tuning PID controllers. We discuss some of the more celebrated tuning methods and make an attempt to anticipate future directions of identification procedures in the effort to provide reliable answers to more involved problems. The algorithmic progression of the different methods starts with easy-to-estimate, minimal information about the plant, in the form of a single frequency point in the Nyquist plot or a couple of parameters of the step response, aiming to produce the tuning parameters with back-of-the-envelope calculations. High order general models from either first-principles modeling or system identification were then used in a variety of off-line or on-line optimization problems to produce optimal PID tunings, and were often converted to the always elusive set of quick calculations that could tune a PID controller in the field. Highest in complexity, are the most recent methods which involve maximal information about the plant, in the form of one or more nominal models and a description of uncertainty, and aim for a tuning that combines high performance, adequate robustness, and high reliability. The latter appears to be the key qualitative difference between early and late identification and controller tuning procedures, that is, the ability to provide a reliable tuning with minimal trial-and-error. An alternative implementation of the same concepts can be performed as a direct optimization of the PID parameters, that can be readily converted to an attractive on-line tuning application. Finally, employing more complex, min–max identification methods can safeguard against performance deterioration problems due to disturbances or poorly designed excitation, albeit with a significant increase in computational load and identification time.


Linear Quadratic Regulator Phase Margin Flexible Mode Disturbance Attenuation Crossover Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Astrom, K.J., Hagglund, T.: PID Controllers: Theory, Design, and Tuning, 2nd edn. ISA (1995) Google Scholar
  2. 2.
    Voda, A.A., Landau, I.D.: A method for the auto-calibration of PID controllers. Automatica 31(1), 41–53 (1995) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Harris, S., Mellichamp, D.: Controller tuning using optimization to meet multiple closed-loop criteria. AIChE J. 31(3), 484–487 (1985) CrossRefGoogle Scholar
  4. 4.
    Schei, T.S.: Automatic tuning of PID controllers based on transfer function estimation. Automatica 30(12), 1983–1989 (1994) MATHCrossRefGoogle Scholar
  5. 5.
    Nishikawa, Y., Sannomiya, N., Ohta, T., Tanaka, H.: A method for auto-tuning of PID control parameters. Automatica 20(3), 321–332 (1984) MATHCrossRefGoogle Scholar
  6. 6.
    Tan, W., Liu, J., Chen, T., Marquez, H.: Comparison of some well-known PID tuning formulas. Comput. Chem. Eng. 30, 1416–1423 (2006) CrossRefGoogle Scholar
  7. 7.
    Kristansson, B., Lennartson, B.: Evaluation and simple tuning of PID controllers with high-frequency robustness. J. Process Control 16, 91–102 (2006) CrossRefGoogle Scholar
  8. 8.
    de Callafon, R.A., Van den Hof, P.M.J.: Control relevant identification for H -norm based performance specifications. In: Proc. 34th CDC, pp. 3498–3503 (1995) Google Scholar
  9. 9.
    Gevers, M., Anderson, B.D.O., Codrons, B.: Issues in modeling for control. In: Proc. 1998 ACC, pp. 1615–1619 (1998) Google Scholar
  10. 10.
    Reinelt, W., Garulli, A., Ljung, L.: Comparing different approaches to model error modeling in robust identification. Automatica 38, 787–803 (2002) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Bombois, X., Gevers, M., Scorletti, G., Anderson, B.: Robustness analysis tools for an uncertainty set obtained by prediction error identification. Automatica 37(10), 1629–1636 (2001) MATHCrossRefGoogle Scholar
  12. 12.
    Gevers, M., Bombois, X., Codrons, B., Scorletti, G., Anderson, B.: Model validation for control and controller validation in a prediction error identification framework. Automatica 39(3), 403–427 (2003) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Rivera, D.E., Gaikwad, S.V.: Digital PID controller tuning using prefiltered ARX estimation. In: Proc. 31st CDC, pp. 68–69 (1992) Google Scholar
  14. 14.
    Grassi, E., Tsakalis, K.S.: PID controller tuning by frequency loop shaping. In: Proc. 35th CDC (1996) Google Scholar
  15. 15.
    Adusumilli, S., Rivera, D.E., Dash, S., Tsakalis, K.: Integrated MIMO identification and robust PID controller design through loop shaping. In: Proc. 1998 ACC, pp. 1230–1234 (1998) Google Scholar
  16. 16.
    Grimble, M.J.: Open image in new window controllers with a PID structure. J. Dyn. Syst. Meas. Control 112, 325–336 (1990) MATHCrossRefGoogle Scholar
  17. 17.
    Panagopoulos, H., Astrom, K.J., Hagglund, T.: Design of PID controllers based on constrained optimization. IEE Proc., Control Theory Appl. 149(1), 32–40 (2002) CrossRefGoogle Scholar
  18. 18.
    Astrom, K.J., Panagopoulos, H., Hagglund, T.: Design of PI controllers based on nonconvex optimization. Automatica 34(5), 585–601 (1998) MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ender, D.: Process control performance: Not as good as you think. In: Control Engineering, pp. 180–190 (1993) Google Scholar
  20. 20.
    Gaikwad, S.V., Dash, S.K., Tsakalis, K.S., Stein, G.: Auto-tuning controller using loop-shaping. U.S. Patent No. 7,024,253, 4 April 2006 Google Scholar
  21. 21.
    Grassi, E., Tsakalis, K., Dash, S., Gaikwad, S.V., MacArthur, W., Stein, G.: Integrated identification and PID controller tuning by frequency loop-shaping. IEEE Trans. Control Syst. Technol. 9(2), 285–294 (2001) CrossRefGoogle Scholar
  22. 22.
    Gevers, M.: Identification for control: from early achievements to the revival of experiment design. Eur. J. Control 11, 1–18 (2005) MathSciNetCrossRefGoogle Scholar
  23. 23.
    Hjalmarsson, H.: From experiment to closed-loop control. Automatica 41, 393–438 (2005) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Lee, W.S., Anderson, B.D.O., Kosut, R.L., Mareels, I.M.Y.: A new approach to adaptive robust control. Int. J. Adapt. Control Signal Process. 7(3), 183–211 (1993) MATHCrossRefGoogle Scholar
  25. 25.
    Lee, W.S., Anderson, B.D.O., Mareels, I.M.Y., Kosut, R.L.: On some key issues in the windsurfer approach to adaptive robust control. Automatica 31(11), 1619–1636 (1995) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Ziegler, J.G., Nichols, N.B.: Optimum settings for automatic controllers. Trans. Am. Soc. Mech. Eng. 64(11), 759–768 (1942) Google Scholar
  27. 27.
    Astrom, K.J., Hagglund, T.: A frequency domain method for automatic tuning of simple feedback loops. In: Proc. 23rd IEEE Conf. Dec. Contr., Las Vegas, NV, December 1984, pp. 299–304 (1984) Google Scholar
  28. 28.
    Gaikwad, S., Dash, S., Stein, G.: Auto-tuning PID using loop-shaping ideas. In: Proc. 1999 IEEE Intl. Conf. on Control Applications, Hawaii, August 1999, pp. 589–593 (1999) Google Scholar
  29. 29.
    Grassi, E., Tsakalis, K.S., Dash, S., Gaikwad, S.V., Stein, G.: Adaptive/self-tuning PID control by frequency loop-shaping. In: Proc. 39th IEEE Conf. on Decision and Control, Sydney, December 2000, pp. 1099–1101 (2000) Google Scholar
  30. 30.
    Jun, M., Safonov, M.G.: Automatic PID tuning: An application of unfalsified control. In: Proc. IEEE CCA/CACSD, Kohala Coast Island of Hawaii, 22–27 August 1999, pp. 328–333 (1999) Google Scholar
  31. 31.
    Morse, A.S., Mayne, D.Q., Goodwin, G.C.: Application of hysteresis switching in parameter adaptive control. IEEE Trans. Autom. Control 37(9), 1343–1354 (1992) MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Safonov, M.G., Tsao, T.: The unfalsified control concept and learning. IEEE Trans. Autom. Control 42(6), 843–847 (1997) MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Hespanha, J.P., Liberzon, D., Morse, A.S.: Hysteresis-based switching algorithms for supervisory control of uncertain systems. Automatica 39(2), 263–272 (2003) MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Dehghani, A., Anderson, B.D.O., Lanzon, A.: Unfalsified adaptive control: a new controller implementation and some remarks. In: Proc. of the European Control Conference 2007, Kos, Greece, 2–5 July 2007, pp. 709–716 (2007) Google Scholar
  35. 35.
    Stefanovic, M., Safonov, M.G.: Safe adaptive switching control: Stability and convergence. IEEE Trans. Autom. Control 53(9), 2012–2021 (2008) MathSciNetCrossRefGoogle Scholar
  36. 36.
    Khalil, H.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River (2002) MATHGoogle Scholar
  37. 37.
    Francis, B.: A Course in H Control Theory. Springer, Berlin (1987) MATHCrossRefGoogle Scholar
  38. 38.
    Barnes, T.J.D., Wang, L., Cluett, W.R.: A frequency domain design method for PID controllers. In: Proc. Amer. Contr. Conf., San Francisco, pp. 890–894 (1993) Google Scholar
  39. 39.
    Wang, L., Barnes, T.J.D., Cluett, W.R.: A new frequency domain design method for PID controllers. IEE Proc., Control Theory Appl. 142(4), 265–271 (1995) MATHCrossRefGoogle Scholar
  40. 40.
    Rivera, D.E., Morari, M., Skogestad, S.: Internal model control 4. PID controller design. Ind. Eng. Chem. Process Des. Dev. 25, 252–265 (1986) CrossRefGoogle Scholar
  41. 41.
    Grassi, E., Tsakalis, K.: PID controller tuning by frequency loop-shaping: Application to diffusion furnace temperature control. IEEE Trans. Control Syst. Technol. 8(5), 842–847 (2000) CrossRefGoogle Scholar
  42. 42.
    Ljung, L.: System Identification. Prentice Hall, New York (1987) MATHGoogle Scholar
  43. 43.
    Vidyasagar, M.: Nonlinear Systems Analysis, 2nd edn. Prentice Hall, New York (1987) Google Scholar
  44. 44.
    Safonov, M.G.: Stability margins of diagonally perturbed multivariable feedback systems. Proc. IEEE 129(6), 251–256 (1982) MathSciNetGoogle Scholar
  45. 45.
    Adusumilli, S., Rivera, D.E., Dash, S., Tsakalis, K.: Integrated identification and robust PID controller design through loop shaping for multi-input multi-output processes. In: Proc. ACC, June 1998, pp. 1230–1234 (1998) Google Scholar
  46. 46.
    McFarlane, D.C., Glover, K.: A loop shaping design procedure using H synthesis. IEEE Trans. Autom. Control 37(6), 759–769 (1992) MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Alexander, C., Tsakalis, K.S.: Control of an inverted pendulum: A classical experiment revisited. In: Proc. of 1995 Soc. for Comp. Sim. Western Multi-Conference, Las Vegas, NV, January 1995 Google Scholar
  48. 48.
    Papadopoulos, A., Tsakalis, K.: Adaptive control of an inverted pendulum. In: Proc. 23rd IASTED int’l conf. on modeling, identification and control, Grindelwald, Switzerland, February 2004, vol. 412-051, pp. 461–466 (2004) Google Scholar
  49. 49.
    Limanond, S., Si, J., Tsakalis, K.S.: Monitoring and control of semiconductor manufacturing processes. IEEE Control Syst. 18(6), 46–58 (1998) CrossRefGoogle Scholar
  50. 50.
    Tsakalis, K.S., Stoddard, K.D.: Integrated identification and control for diffusion/CVD furnaces. In: Proc. 6th IEEE Int. Conference on Emerging Technologies and Factory Automation, Los Angeles, September 1997, pp. 514–519 (1997) CrossRefGoogle Scholar
  51. 51.
    Tsakalis, K., Flores-Godoy, J.-J., Stoddard, K.: Temperature control of diffusion/CVD furnaces using robust multivariable loop-shaping techniques. In: Proc. 38th Conf. Decision and Contr., Phoenix, AZ, December 1999, vol. 4, pp. 4192–4197 (1999) Google Scholar
  52. 52.
    McCormack, A.S., Godfrey, K.R.: Rule-Based autotuning based on frequency domain identification. IEEE Trans. Control Syst. Technol. 6(1), 43–61 (1998) CrossRefGoogle Scholar
  53. 53.
    Fox, P.D., Godfrey, K.R.: Multiharmonic perturbations for nonparametric autotuning. IEE Proc., Control Theory Appl. 146, 1–8 (1999) CrossRefGoogle Scholar
  54. 54.
    Zhu, Y.-C.: Identification and control of MIMO industrial processes: An integration approach. Ph.D. dissertation. Eindhoven Univ. of Technology, Dept. of Electr. Engr., The Netherlands (1990) Google Scholar
  55. 55.
    Ioannou, P.A., Sun, J.: Robust Adaptive Control. Prentice Hall, New York (1996) MATHGoogle Scholar
  56. 56.
    Grassi, E., Tsakalis, K., Dash, S., Gaikwad, S., Stein, G.: Adaptive/self-tuning PID control by frequency loop-shaping. In: Proc. IEEE 39th Conf. Decision and Control, Sydney, 12–15 December 2000, vol. 2, pp. 1099–1101 (2000) Google Scholar
  57. 57.
    Krause, J.M., Khargonekar, P.P.: Robust parameter adjustment. In: Proc. 1988 ACC, Atlanta, GA, pp. 331–336 (1988) Google Scholar
  58. 58.
    Tsakalis, K., Dash, S.: Adaptive PID control using Filter-Banks and frequency loop shaping. In: European Control Conference 2007, Kos, Greece, 2–5 July 2007, pp. 1340–1347 (2007) Google Scholar
  59. 59.
    Astrom, K.J., Rundkwist, L.: Integrator wind up and how to avoid it. In: Proc. 1989 ACC, pp. 1693–1698 (1989) Google Scholar
  60. 60.
    Teel, A.R., Kapoor, N.: The L-2 anti-windup problem: its definition and solution. In: Proc. of Europ. Contr. Conf. (1997) Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.School of Electrical Computer and Energy EngineeringArizona State UniversityTempeUSA
  2. 2.Honeywell Technology CenterMinneapolisUSA

Personalised recommendations