Skip to main content

Identification for PID Control

  • Chapter
PID Control in the Third Millennium

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

In this study, we address issues arising in system identification-based plant modeling for the purpose of tuning PID controllers. We discuss some of the more celebrated tuning methods and make an attempt to anticipate future directions of identification procedures in the effort to provide reliable answers to more involved problems. The algorithmic progression of the different methods starts with easy-to-estimate, minimal information about the plant, in the form of a single frequency point in the Nyquist plot or a couple of parameters of the step response, aiming to produce the tuning parameters with back-of-the-envelope calculations. High order general models from either first-principles modeling or system identification were then used in a variety of off-line or on-line optimization problems to produce optimal PID tunings, and were often converted to the always elusive set of quick calculations that could tune a PID controller in the field. Highest in complexity, are the most recent methods which involve maximal information about the plant, in the form of one or more nominal models and a description of uncertainty, and aim for a tuning that combines high performance, adequate robustness, and high reliability. The latter appears to be the key qualitative difference between early and late identification and controller tuning procedures, that is, the ability to provide a reliable tuning with minimal trial-and-error. An alternative implementation of the same concepts can be performed as a direct optimization of the PID parameters, that can be readily converted to an attractive on-line tuning application. Finally, employing more complex, min–max identification methods can safeguard against performance deterioration problems due to disturbances or poorly designed excitation, albeit with a significant increase in computational load and identification time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    . If F is stable, .

  2. 2.

    The Sensitivity crossover is related to the closed-loop crossover (Complementary Sensitivity) but it is better behaved in cases of right half-plane zeros near the desired bandwidth.

References

  1. Astrom, K.J., Hagglund, T.: PID Controllers: Theory, Design, and Tuning, 2nd edn. ISA (1995)

    Google Scholar 

  2. Voda, A.A., Landau, I.D.: A method for the auto-calibration of PID controllers. Automatica 31(1), 41–53 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Harris, S., Mellichamp, D.: Controller tuning using optimization to meet multiple closed-loop criteria. AIChE J. 31(3), 484–487 (1985)

    Article  Google Scholar 

  4. Schei, T.S.: Automatic tuning of PID controllers based on transfer function estimation. Automatica 30(12), 1983–1989 (1994)

    Article  MATH  Google Scholar 

  5. Nishikawa, Y., Sannomiya, N., Ohta, T., Tanaka, H.: A method for auto-tuning of PID control parameters. Automatica 20(3), 321–332 (1984)

    Article  MATH  Google Scholar 

  6. Tan, W., Liu, J., Chen, T., Marquez, H.: Comparison of some well-known PID tuning formulas. Comput. Chem. Eng. 30, 1416–1423 (2006)

    Article  Google Scholar 

  7. Kristansson, B., Lennartson, B.: Evaluation and simple tuning of PID controllers with high-frequency robustness. J. Process Control 16, 91–102 (2006)

    Article  Google Scholar 

  8. de Callafon, R.A., Van den Hof, P.M.J.: Control relevant identification for H -norm based performance specifications. In: Proc. 34th CDC, pp. 3498–3503 (1995)

    Google Scholar 

  9. Gevers, M., Anderson, B.D.O., Codrons, B.: Issues in modeling for control. In: Proc. 1998 ACC, pp. 1615–1619 (1998)

    Google Scholar 

  10. Reinelt, W., Garulli, A., Ljung, L.: Comparing different approaches to model error modeling in robust identification. Automatica 38, 787–803 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bombois, X., Gevers, M., Scorletti, G., Anderson, B.: Robustness analysis tools for an uncertainty set obtained by prediction error identification. Automatica 37(10), 1629–1636 (2001)

    Article  MATH  Google Scholar 

  12. Gevers, M., Bombois, X., Codrons, B., Scorletti, G., Anderson, B.: Model validation for control and controller validation in a prediction error identification framework. Automatica 39(3), 403–427 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rivera, D.E., Gaikwad, S.V.: Digital PID controller tuning using prefiltered ARX estimation. In: Proc. 31st CDC, pp. 68–69 (1992)

    Google Scholar 

  14. Grassi, E., Tsakalis, K.S.: PID controller tuning by frequency loop shaping. In: Proc. 35th CDC (1996)

    Google Scholar 

  15. Adusumilli, S., Rivera, D.E., Dash, S., Tsakalis, K.: Integrated MIMO identification and robust PID controller design through loop shaping. In: Proc. 1998 ACC, pp. 1230–1234 (1998)

    Google Scholar 

  16. Grimble, M.J.: controllers with a PID structure. J. Dyn. Syst. Meas. Control 112, 325–336 (1990)

    Article  MATH  Google Scholar 

  17. Panagopoulos, H., Astrom, K.J., Hagglund, T.: Design of PID controllers based on constrained optimization. IEE Proc., Control Theory Appl. 149(1), 32–40 (2002)

    Article  Google Scholar 

  18. Astrom, K.J., Panagopoulos, H., Hagglund, T.: Design of PI controllers based on nonconvex optimization. Automatica 34(5), 585–601 (1998)

    Article  MathSciNet  Google Scholar 

  19. Ender, D.: Process control performance: Not as good as you think. In: Control Engineering, pp. 180–190 (1993)

    Google Scholar 

  20. Gaikwad, S.V., Dash, S.K., Tsakalis, K.S., Stein, G.: Auto-tuning controller using loop-shaping. U.S. Patent No. 7,024,253, 4 April 2006

    Google Scholar 

  21. Grassi, E., Tsakalis, K., Dash, S., Gaikwad, S.V., MacArthur, W., Stein, G.: Integrated identification and PID controller tuning by frequency loop-shaping. IEEE Trans. Control Syst. Technol. 9(2), 285–294 (2001)

    Article  Google Scholar 

  22. Gevers, M.: Identification for control: from early achievements to the revival of experiment design. Eur. J. Control 11, 1–18 (2005)

    Article  MathSciNet  Google Scholar 

  23. Hjalmarsson, H.: From experiment to closed-loop control. Automatica 41, 393–438 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lee, W.S., Anderson, B.D.O., Kosut, R.L., Mareels, I.M.Y.: A new approach to adaptive robust control. Int. J. Adapt. Control Signal Process. 7(3), 183–211 (1993)

    Article  MATH  Google Scholar 

  25. Lee, W.S., Anderson, B.D.O., Mareels, I.M.Y., Kosut, R.L.: On some key issues in the windsurfer approach to adaptive robust control. Automatica 31(11), 1619–1636 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ziegler, J.G., Nichols, N.B.: Optimum settings for automatic controllers. Trans. Am. Soc. Mech. Eng. 64(11), 759–768 (1942)

    Google Scholar 

  27. Astrom, K.J., Hagglund, T.: A frequency domain method for automatic tuning of simple feedback loops. In: Proc. 23rd IEEE Conf. Dec. Contr., Las Vegas, NV, December 1984, pp. 299–304 (1984)

    Google Scholar 

  28. Gaikwad, S., Dash, S., Stein, G.: Auto-tuning PID using loop-shaping ideas. In: Proc. 1999 IEEE Intl. Conf. on Control Applications, Hawaii, August 1999, pp. 589–593 (1999)

    Google Scholar 

  29. Grassi, E., Tsakalis, K.S., Dash, S., Gaikwad, S.V., Stein, G.: Adaptive/self-tuning PID control by frequency loop-shaping. In: Proc. 39th IEEE Conf. on Decision and Control, Sydney, December 2000, pp. 1099–1101 (2000)

    Google Scholar 

  30. Jun, M., Safonov, M.G.: Automatic PID tuning: An application of unfalsified control. In: Proc. IEEE CCA/CACSD, Kohala Coast Island of Hawaii, 22–27 August 1999, pp. 328–333 (1999)

    Google Scholar 

  31. Morse, A.S., Mayne, D.Q., Goodwin, G.C.: Application of hysteresis switching in parameter adaptive control. IEEE Trans. Autom. Control 37(9), 1343–1354 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Safonov, M.G., Tsao, T.: The unfalsified control concept and learning. IEEE Trans. Autom. Control 42(6), 843–847 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hespanha, J.P., Liberzon, D., Morse, A.S.: Hysteresis-based switching algorithms for supervisory control of uncertain systems. Automatica 39(2), 263–272 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Dehghani, A., Anderson, B.D.O., Lanzon, A.: Unfalsified adaptive control: a new controller implementation and some remarks. In: Proc. of the European Control Conference 2007, Kos, Greece, 2–5 July 2007, pp. 709–716 (2007)

    Google Scholar 

  35. Stefanovic, M., Safonov, M.G.: Safe adaptive switching control: Stability and convergence. IEEE Trans. Autom. Control 53(9), 2012–2021 (2008)

    Article  MathSciNet  Google Scholar 

  36. Khalil, H.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  37. Francis, B.: A Course in H Control Theory. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  38. Barnes, T.J.D., Wang, L., Cluett, W.R.: A frequency domain design method for PID controllers. In: Proc. Amer. Contr. Conf., San Francisco, pp. 890–894 (1993)

    Google Scholar 

  39. Wang, L., Barnes, T.J.D., Cluett, W.R.: A new frequency domain design method for PID controllers. IEE Proc., Control Theory Appl. 142(4), 265–271 (1995)

    Article  MATH  Google Scholar 

  40. Rivera, D.E., Morari, M., Skogestad, S.: Internal model control 4. PID controller design. Ind. Eng. Chem. Process Des. Dev. 25, 252–265 (1986)

    Article  Google Scholar 

  41. Grassi, E., Tsakalis, K.: PID controller tuning by frequency loop-shaping: Application to diffusion furnace temperature control. IEEE Trans. Control Syst. Technol. 8(5), 842–847 (2000)

    Article  Google Scholar 

  42. Ljung, L.: System Identification. Prentice Hall, New York (1987)

    MATH  Google Scholar 

  43. Vidyasagar, M.: Nonlinear Systems Analysis, 2nd edn. Prentice Hall, New York (1987)

    Google Scholar 

  44. Safonov, M.G.: Stability margins of diagonally perturbed multivariable feedback systems. Proc. IEEE 129(6), 251–256 (1982)

    MathSciNet  Google Scholar 

  45. Adusumilli, S., Rivera, D.E., Dash, S., Tsakalis, K.: Integrated identification and robust PID controller design through loop shaping for multi-input multi-output processes. In: Proc. ACC, June 1998, pp. 1230–1234 (1998)

    Google Scholar 

  46. McFarlane, D.C., Glover, K.: A loop shaping design procedure using H synthesis. IEEE Trans. Autom. Control 37(6), 759–769 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  47. Alexander, C., Tsakalis, K.S.: Control of an inverted pendulum: A classical experiment revisited. In: Proc. of 1995 Soc. for Comp. Sim. Western Multi-Conference, Las Vegas, NV, January 1995

    Google Scholar 

  48. Papadopoulos, A., Tsakalis, K.: Adaptive control of an inverted pendulum. In: Proc. 23rd IASTED int’l conf. on modeling, identification and control, Grindelwald, Switzerland, February 2004, vol. 412-051, pp. 461–466 (2004)

    Google Scholar 

  49. Limanond, S., Si, J., Tsakalis, K.S.: Monitoring and control of semiconductor manufacturing processes. IEEE Control Syst. 18(6), 46–58 (1998)

    Article  Google Scholar 

  50. Tsakalis, K.S., Stoddard, K.D.: Integrated identification and control for diffusion/CVD furnaces. In: Proc. 6th IEEE Int. Conference on Emerging Technologies and Factory Automation, Los Angeles, September 1997, pp. 514–519 (1997)

    Chapter  Google Scholar 

  51. Tsakalis, K., Flores-Godoy, J.-J., Stoddard, K.: Temperature control of diffusion/CVD furnaces using robust multivariable loop-shaping techniques. In: Proc. 38th Conf. Decision and Contr., Phoenix, AZ, December 1999, vol. 4, pp. 4192–4197 (1999)

    Google Scholar 

  52. McCormack, A.S., Godfrey, K.R.: Rule-Based autotuning based on frequency domain identification. IEEE Trans. Control Syst. Technol. 6(1), 43–61 (1998)

    Article  Google Scholar 

  53. Fox, P.D., Godfrey, K.R.: Multiharmonic perturbations for nonparametric autotuning. IEE Proc., Control Theory Appl. 146, 1–8 (1999)

    Article  Google Scholar 

  54. Zhu, Y.-C.: Identification and control of MIMO industrial processes: An integration approach. Ph.D. dissertation. Eindhoven Univ. of Technology, Dept. of Electr. Engr., The Netherlands (1990)

    Google Scholar 

  55. Ioannou, P.A., Sun, J.: Robust Adaptive Control. Prentice Hall, New York (1996)

    MATH  Google Scholar 

  56. Grassi, E., Tsakalis, K., Dash, S., Gaikwad, S., Stein, G.: Adaptive/self-tuning PID control by frequency loop-shaping. In: Proc. IEEE 39th Conf. Decision and Control, Sydney, 12–15 December 2000, vol. 2, pp. 1099–1101 (2000)

    Google Scholar 

  57. Krause, J.M., Khargonekar, P.P.: Robust parameter adjustment. In: Proc. 1988 ACC, Atlanta, GA, pp. 331–336 (1988)

    Google Scholar 

  58. Tsakalis, K., Dash, S.: Adaptive PID control using Filter-Banks and frequency loop shaping. In: European Control Conference 2007, Kos, Greece, 2–5 July 2007, pp. 1340–1347 (2007)

    Google Scholar 

  59. Astrom, K.J., Rundkwist, L.: Integrator wind up and how to avoid it. In: Proc. 1989 ACC, pp. 1693–1698 (1989)

    Google Scholar 

  60. Teel, A.R., Kapoor, N.: The L-2 anti-windup problem: its definition and solution. In: Proc. of Europ. Contr. Conf. (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostas S. Tsakalis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Tsakalis, K.S., Dash, S. (2012). Identification for PID Control. In: Vilanova, R., Visioli, A. (eds) PID Control in the Third Millennium. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-2425-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2425-2_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2424-5

  • Online ISBN: 978-1-4471-2425-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics