This chapter focuses on the primary cardiomyopathies. These heterogeneous group of ­diseases occur intrinsically to the myocardium and most have an underlying genetic basis. This chapter describes in detail dilated cardiomyopathy, hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, restrictive cardiomyopathy, as well as isolated left ventricular noncompaction, a more recently recognized entity. This chapter provides macroscopic and microscopic images of the various cardiomyopathies and describes in detail current concepts surrounding their pathogenesis and genetic basis.


Cardiomyopathy Hypertrophy Myocyte disarray Autosomal dominant Arrhythmogenic right ventricular cardiomyopathy Isolated left ventricular noncompaction Endomyocardial fibrosis Sarcoidosis Fabry’s disease Amyloidosis 


  1. 1.
    Richardson P, McKenna WJ, Bristow M, et al. Report of the 1995 WHO/ISFC Task Force on the definition and classification of cardiomyopathies. Circulation. 1996;93:841–2.PubMedCrossRefGoogle Scholar
  2. 2.
    Franz W-M, Muller OJ, Katus HA. Cardiomyopathies: from genetics to the prospect of treatment. Lancet. 2001;358:1627–37.PubMedCrossRefGoogle Scholar
  3. 3.
    Maron BJ, Towbin JA, Thiene G, et al. Contemporary definitions and classifications of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and transplantation Committee: Quality of Care and Outcomes Research and functional genomics and translational biology interdisciplinary working groups; and the Council on Epidemiology and Prevention. Circulation. 2006;113:1807–16.PubMedCrossRefGoogle Scholar
  4. 4.
    Mestroni L, Maisch B, McKenna WJ, et al. Guidelines for the study of familial dilated cardiomyopathies. Eur Heart J. 1999;20:93–102.PubMedCrossRefGoogle Scholar
  5. 5.
    Michels VV, Moll PP, Miller FA, et al. The frequency of familial dilated cardiomyopathy in a series of patients with idiopathic dilated cardiomyopathy. N Engl J Med. 1992;326:77–82.PubMedCrossRefGoogle Scholar
  6. 6.
    Keeling PJ, Gang Y, Smith G, et al. Familial dilated cardiomyopathy in the United Kingdom. BMJ. 1995;73:417–21.Google Scholar
  7. 7.
    Michels VV, Driscoll DJ, Miller FA, Olson TM, Atkinson EJ, Olswold CL, Schaid DJ. Progression of familial and non-familial dilated cardiomyopathy: long term follow up. Heart. 2003;89:757–61.PubMedCrossRefGoogle Scholar
  8. 8.
    Grunig E, Tasman JA, Kucherer H, et al. Frequency and phenotypes of familial dilated cardiomyopathy. J Am Coll Cardiol. 1998;31:186–94.PubMedCrossRefGoogle Scholar
  9. 9.
    Towbin JA, Bowles NE. The failing heart. Nature. 2002;415:227–33.PubMedCrossRefGoogle Scholar
  10. 10.
    Bowles NE, Bowles KR, Towbin JA. The “final common pathway” hypothesis and inherited cardiovascular disease. The role of cytoskeletal proteins in dilated cardiomyopathy. Herz. 2000;25:168–75.PubMedCrossRefGoogle Scholar
  11. 11.
    Taylor MRG, Carniel E, Mestroni L. Cardiomyopathy, familial dilated. Orphanet J Rare Dis. 2006;1:27.PubMedCrossRefGoogle Scholar
  12. 12.
    Taylor MRG, Fain P, Sinagra G, et al. Natural history of dilated cardiomyopathy due to lamin A/C gene mutations. J Am Coll Cardiol. 2003;41:771–80.PubMedCrossRefGoogle Scholar
  13. 13.
    Sinagra G, Di Lenarda A, Brodsky GL. Current perspective new insights into the molecular basis of familial dilated cardiomyopathy. Ital Heart J. 2001;2:280–6.PubMedGoogle Scholar
  14. 14.
    Arbustini E, Diegoli M, Fasani R, et al. Mitochondrial DNA mutations and mitochondrial abnormalities in dilated cardiomyopathy. Am J Pathol. 1998;153:1501–10.PubMedCrossRefGoogle Scholar
  15. 15.
    Mestroni L, Krajinovic M, Severini GM, et al. Familial dilated cardiomyopathy. Br Heart J. 1994;72:35–41.CrossRefGoogle Scholar
  16. 16.
    Engberding R, Bender F. Identification of a rare congenital anomaly of the myocardium by two-dimensional echocardiography: persistence of isolated myocardial sinusoids. Am J Cardiol. 1984;53:1733–4.PubMedCrossRefGoogle Scholar
  17. 17.
    Chin TK, Perloff JK, Williams R, et al. Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation. 1990;82:507–13.PubMedCrossRefGoogle Scholar
  18. 18.
    Andrews RE, Fenton MJ, Ridout DA, Burch M. British Congenital Cardiac Association. New-onset heart failure due to heart muscle disease in childhood: a prospective study in the United Kingdom and Ireland. Circulation. 2008;117:79–84.PubMedCrossRefGoogle Scholar
  19. 19.
    Boyd MT, Seward JB, Tajik AJ, et al. Frequency and location of prominent left ventricular trabeculations at autopsy in 474 normal human hearts: implications for evaluation of mural thrombi by two-dimensional echocardiography. J Am Coll Cardiol. 1987;9:323–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Stollberger C, Finsterer J. Trabeculation and left ventricular hypertrabeculation/non-compaction. J Soc Echocardiogr. 2004;17:1120–1.CrossRefGoogle Scholar
  21. 21.
    Sedmera D, Pexieder T, Vuillemin M, et al. Developmental patterning of the myocardium. Anat Rec. 2000;258:319–37.PubMedCrossRefGoogle Scholar
  22. 22.
    Engberding R, Yelbuz MT. Breithardt G. Isolated noncompaction of the left ventricular myocardium. A review of the literature two decades after the initial case description. Clin Res Cardiol. 2007;96:481–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Jenni R, Wyss CA, Oechslin EN, Kaufman PA. Isolated ventricular noncompaction is associated with coronary microcirculatory dysfunction. JACC. 2002;39:450–4.PubMedGoogle Scholar
  24. 24.
    Bleyl SB, Mumford BR, Brown-Harrison MC, et al. Xq28-linked noncompaction of the left ventricular myocardium: prenatal diagnosis and pathologic analysis of affected individuals. Am J Med Genet. 1997;72:257–65.PubMedCrossRefGoogle Scholar
  25. 25.
    Budde BS, Binner P, Waldmuller S, et al. Noncompaction of the ventricular myocardium is associated with a de novo mutation in the β(beta)-myosin heavy chain gene. PloS One. 2007;2(12):e1362.PubMedCrossRefGoogle Scholar
  26. 26.
    Hoedemaekers YM, Caliskan K, Majoor-Krakauer D, et al. Cardiac β-myosin heavy chain defects in two families with non-compaction cardiomyopathy: linking non-compaction to hypertrophic, -restrictive, and dilated cardiomyopathies. Eur Heart J. 2007;28:2732–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Monserrat L, Hermida-Prieto M, Fernandez X, et al. Mutation in the alpha-cardiac actin gene associated with apical hypertrophic cardiomyopathy, left ventricular non-compaction, and septal defects. Eur Heart J. 2007;28:1953–61.PubMedCrossRefGoogle Scholar
  28. 28.
    Klaassen S, Probst S, Oechslin E, et al. Mutations in sarcomere protein genes in left ventricular noncompaction. Circulation. 2008;117:2893–901.PubMedCrossRefGoogle Scholar
  29. 29.
    Chrissoheris MP, Ronan A, Vivas Y, et al. Isolated noncompaction of the ventricular myocardium: contemporary diagnosis and management. Clin Cardiol. 2007;30:156–60.PubMedCrossRefGoogle Scholar
  30. 30.
    Xing Y, Ichida F, Matsuoka T, et al. Genetic analysis in patients with left ventricular noncompaction and evidence for genetic heterogeneity. Mol Genet Metab. 2006;88:71–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Kenton AB, Sanchez X, Coveler KJ. Isolated left ventricular noncompaction is rarely caused by mutations in G4.5, α(alpha)-dystrobrevin and FK Binding Protein-12. Mol Genet Metab. 2004;82:162–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Oechslin EN, Attenhofer Jost CH, Rojas JR. Long-term follow-up of 34 adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor prognosis. J Am Coll Cardiol. 2000;36:493–500.PubMedCrossRefGoogle Scholar
  33. 33.
    Corrado G, Fazio G, Zachara E, et al. Natural history of isolated noncompaction of the ventricular myocardium in adults. Data from the Societa Italiana di Ecografia Cardiovascolare (SIEC) Registry. Circulation 2008;118:S_948Google Scholar
  34. 34.
    Maron BJ. Hypertrophic cardiomyopathy. A systematic review. JAMA. 2002;287:1308–20.PubMedCrossRefGoogle Scholar
  35. 35.
    Maron BJ, Gardin JM, Flack JM. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardio­graphic analysis of 4111 subjects in the CARDIA study. Circulation. 1995;92:785–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Thierfelder L, Watkins H, MacRae C, et al. Alpha-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell. 1994;77:701–12.PubMedCrossRefGoogle Scholar
  37. 37.
    Bonne G, Carrier L, Richard P, et al. Familial hypertrophic cardiomyopathy: from mutations to functional defects. Circ Res. 1998;83:580–93.PubMedCrossRefGoogle Scholar
  38. 38.
    Blair E, Redwood C, Ashrafian H, et al. Mutations in the γ2 sub-unit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Hum Mol Genet. 2001;10:1215–20.PubMedCrossRefGoogle Scholar
  39. 39.
    Santorelli FM, Mak SC, El-Schahawi M, et al. Maternally inherited cardiomyopathy and hearing loss associated with a novel mutation in the mitochondrial tRNA (Lys) gene (G8363A). Am J Hum Genet. 1996;58:933–9.PubMedGoogle Scholar
  40. 40.
    Marian AJ, Salek L, Lutucuta S. Molecular genetics and pathogenesis of hypertrophic cardiomyopathy. Minerva Med. 2001;92:435–51.PubMedGoogle Scholar
  41. 41.
    Watkins H, McKenna WJ, Thierfelder L, et al. Mutations in the genes for cardiac troponin T and α-tropomyosin in hypertrophic cardiomyopathy. New Engl J Med. 1995;332:1058–64.PubMedCrossRefGoogle Scholar
  42. 42.
    Anan R, Greve G, Thierfelder L, et al. Prognostic implication of novel β cardiac myosin heavy chain gene mutations that cause familial hypertrophic cardiomyopathy. J Clin Invest. 1994;93:280–5.PubMedCrossRefGoogle Scholar
  43. 43.
    Watkins H, Rosenzweig T, Hwang DS, et al. Characteristics and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy. N Engl J Med. 1992;326:1106–14.CrossRefGoogle Scholar
  44. 44.
    Vikstrom KL, Leinwand LA. Contractile protein mutations and heart disease. Curr Op Cell Biol. 1996;8:97–105.PubMedCrossRefGoogle Scholar
  45. 45.
    Marian AJ, Roberts R. The molecular genetic basis for hypertrophic cardiomyopathy. J Mol Cell Cardiol. 2001;33:655–70.PubMedCrossRefGoogle Scholar
  46. 46.
    Solomon SD, Wolff S, Watkins H, et al. Left ventricular hypertrophy and morphology in familial hypertrophic cardiomyopathy associated with mutations of the beta-myosin heavy chain gene. J Am Coll Cardiol. 1993;22:498–505.PubMedCrossRefGoogle Scholar
  47. 47.
    Patel R, Lim DS, Reddy D, et al. Variants of trophic factors and expression of hypertrophic cardiomyopathy in patients with hypertrophic cardiomyopathy. J Mol Cell Cardiol. 2000;32:2369–77.PubMedCrossRefGoogle Scholar
  48. 48.
    Perkins MJ, Van Driest SL, Ellsworth ML, et al. Gene-specific modifying effects of pro-LVH polymorphisms involving the renin-angiotensin-aldosterone system among 389 unrelated patients with hypertrophic cardiomyopathy. Eur Heart J. 2005;26:2457–62.PubMedCrossRefGoogle Scholar
  49. 49.
    Davies MJ, McKenna WJ. Hypertrophic cardiomyopathy – pathology and pathogenesis. Histopathology. 1995;26:493–500.PubMedCrossRefGoogle Scholar
  50. 50.
    Hughes SE. The pathology of hypertrophic cardiomyopathy. Histopathology. 2004;44:412–27.PubMedCrossRefGoogle Scholar
  51. 51.
    Teare D. Asymmetrical hypertrophy of the heart in young adults. Br Heart J. 1958;20:1–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Yu EHC, Omran AS, Wigle ED, et al. Mitral regurgitation in hypertrophic obstructive cardiomyopathy; Relationship to obstruction and relief with myectomy. J Am Coll Cardiol. 2000;36:2219–25.PubMedCrossRefGoogle Scholar
  53. 53.
    Mozaffarian D, Caldwell JH. Right ventricular involvement in hypertrophic cardiomyopathy: a case report and literature review. Clin Cardiol. 2001;24:2–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Maron BJ, Sherrid MV, Haas TS, et al. Novel hypertrophic cardiomyopathy phenotype: segmental hypertrophy isolated to the posterobasal left ventricular free wall. Am J Cardiol. 2010;106:750–2.PubMedCrossRefGoogle Scholar
  55. 55.
    Falicov RE, Resnekov L, Bharati S, Lev M. Mid-ventricular obstruction: a variant of obstructive cardiomyopathy. Am J Cardiol. 1976;37:432–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Fighali S, Krajcer Z, Edelman S, Leachman RD. Progression of hypertrophic cardiomyopathy into a hypokinetic left ventricle: higher incidence in patients with midventricular obstruction. J Am Coll Cardiol. 1987;9:288–94.PubMedCrossRefGoogle Scholar
  57. 57.
    Ando H, Imaizumi T, Urabe Y, et al. Apical segmental dysfunction in hypertrophic cardiomyopathy: subgroup with unique clinical features. J Am Coll Cardiol. 1990;16:1579–88.PubMedCrossRefGoogle Scholar
  58. 58.
    Barbosa MM, Coutinho AH, Motta MS, et al. Apical hypertrophic cardiomyopathy: a study of 14 patients and their first degree relatives. Int J Cardiol. 1996;56:41–51.PubMedCrossRefGoogle Scholar
  59. 59.
    Maron MS, Finley JJ, Bos M, et al. Prevalence, clinical significance, and natural history of left ventricular apical aneurysms in hypertrophic cardiomyopathy. Circulation. 2008;118:1541–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Mogensen J, Kubo T, Duque M, et al. Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations. J Clin Invest. 2003;111:209–16.PubMedGoogle Scholar
  61. 61.
    Kaski JP, Syrris P, Burch M, et al. Idiopathic restrictive cardiomyopathy in children is caused by mutations in cardiac sarcomere protein genes. Heart. 2008;94:1478–84.PubMedCrossRefGoogle Scholar
  62. 62.
    Gambarin FI, Tagliasni M, Arbustini E. Pure restrictive cardiomyopathy associated with cardiac troponin I gene mutation: mismatch between the lack of hypertrophy and the presence of disarray. Heart. 2008;94:1257.PubMedCrossRefGoogle Scholar
  63. 63.
    Kubo T, Gimeno JR, Bahl A, et al. Prevalence, clinical significance, and genetic basis of hypertrophic cardiomyopathy with restrictive phenotype. J Am Coll Cardiol. 2007;49:2419–26.PubMedCrossRefGoogle Scholar
  64. 64.
    Kwon DH, Smedira NG, Rodriguez ER, et al. Cardiac magnetic resonance detection of myocardial scarring in hypertrophic cardiomyopathy: correlation with histopathology and prevalence of ventricular tachycardia. J Am Coll Cardiol. 2009;54:242–9.PubMedCrossRefGoogle Scholar
  65. 65.
    O’Hanlon R, Grasso A, Roughton M, et al. Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2010;56:867–74.PubMedCrossRefGoogle Scholar
  66. 66.
    Moon JC, McKenna WJ, McCrohon JA, et al. Toward clinical risk assessment in hypertrophic cardiomyopathy with gadolinium cardiovascular magnetic resonance. J Am Coll Cardiol. 2003;41:1561–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Basso C, Thiene G, Corrado D, Buja G, et al. Hypertrophic cardiomyopathy and sudden death in the young: pathologic evidence of myocardial ischemia. Hum Pathol. 2000;31:988–98.PubMedCrossRefGoogle Scholar
  68. 68.
    Takemura G, Takatsu Y, Fujiwara H. Luminal narrowing of coronary capillaries in human hypertrophic hearts: an ultrastructural morphometrical study using endomyocardial biopsy specimens. Heart. 1998;79:78–85.PubMedGoogle Scholar
  69. 69.
    Cannon 3rd RO, Rosing DR, Maron BJ, et al. Myocardial ischaemia in patients with hypertrophic cardiomyopathy: contribution of inadequate vasodilator reserve and elevated left ventricular filling pressures. Circulation. 1985;71:234–43.PubMedCrossRefGoogle Scholar
  70. 70.
    Iida K, Yutani C, Imakita M, et al. Comparison of percentage area of myocardial fibrosis and disarray in patients with classical form and dilated phase of hypertrophic cardiomyopathy. J Cardiol. 1998;32:173–80.PubMedGoogle Scholar
  71. 71.
    Sen-Chowdhry S, Lowe MD, Sporton SC, et al. Arrhythmogenic right ventricular cardiomyopathy: clinical presentation, diagnosis and management. Am J Med. 2004;117:685–95.PubMedCrossRefGoogle Scholar
  72. 72.
    Thiene G, Nava A, Corrado D, et al. Right ventricular cardiomyopathy and sudden death in young people. N Engl J Med. 1988;318:129–33.PubMedCrossRefGoogle Scholar
  73. 73.
    Maron BJ. Cardiovascular risks to young persons on the athletic field. Ann Int Med. 1998;129:379–86.PubMedGoogle Scholar
  74. 74.
    Norman N, Simpson M, Mogensen J, et al. Novel mutation in desmoplakin causes arrhythmogenic left ventricular cardiomyopathy. Circulation. 2005;112:636–42.PubMedCrossRefGoogle Scholar
  75. 75.
    Corrado D, Basso C, Rizzoli G, et al. Does sports activity enhance the risk of sudden death in adolescents and young adults? J Am Coll Cardiol. 2003;42:1959–63.PubMedCrossRefGoogle Scholar
  76. 76.
    Blomstrom-Lundquist C, Sabel K, Olsson S. A long term follow-up with arrhythmogenic right ventricular dysplasia. Br Heart J. 1987;58:477–88.CrossRefGoogle Scholar
  77. 77.
    Thiene G, Basso C. Arrhythmogenic right ventricular cardiomyopathy. An update. Cardiovasc Pathol. 2001;10:109–11.PubMedCrossRefGoogle Scholar
  78. 78.
    Corrado D, Basso C, Thiene G. Arrhythmogenic right ventricular cardiomyopathy: diagnosis, prognosis and treatment. Heart. 2000;83:588–95.PubMedCrossRefGoogle Scholar
  79. 79.
    Marcus FI, Wojciech Z, Calkins H, et al. Arrhythmogenic right ventricular cardiomyopathy/dysplasia, clinical presentation and diagnostic evaluation: results from the North American multidisciplinary study. Heart Rhythm. 2009;6:984–92.PubMedCrossRefGoogle Scholar
  80. 80.
    Marcus FI, Fontaine G, Guiraudon G. Right ventricular dysplasia. A report of 24 adult cases. Circulation. 1982;65:384–99.PubMedCrossRefGoogle Scholar
  81. 81.
    Basso C, Thiene G, Corrado D. Arrhythmogenic right ventricular cardiomyopathy. Dysplasia, dystrophy or myocarditis? Circulation. 1996;94:983–91.PubMedCrossRefGoogle Scholar
  82. 82.
    Corrado D, Basso C, Thiene G, et al. Spectrum of clinicopathologic manifestations of arrhythmogenic right ventricular cardiomyopathy/dysplasia: a multicenter study. J Am Coll Cardiol. 1997;30:1512–20.PubMedCrossRefGoogle Scholar
  83. 83.
    Gallo P, D’Amati G, Pellicia F. Pathologic evidence of extensive left ventricular involvement in arrhythmogenic right ventricular cardiomyopathy. Hum Pathol. 1992;23:948–52.PubMedCrossRefGoogle Scholar
  84. 84.
    Pinamonti B, Sinagra GF, Salvi A, et al. Left ventricular involvement in right ventricular dysplasia. Am Heart J. 1992;123:711–24.PubMedCrossRefGoogle Scholar
  85. 85.
    Miani D, Pimamonti B, Bussani R, et al. Right ventricular dysplasia: a clinical and pathological study of two families with left ventricular involvement. Br Heart J. 1993;69:151–7.PubMedCrossRefGoogle Scholar
  86. 86.
    D’Amati G, Leone O, di Gioa CR, et al. Arrhythmogenic right ventricular cardiomyopathy: clinicopathologic correlation based on a revised definition of pathologic patterns. Hum Pathol. 2001;32:1078–86.PubMedCrossRefGoogle Scholar
  87. 87.
    Burke AP, Farb A, Tashko G, et al. Arrhythmogenic right ventricular cardiomyopathy and fatty replacement of the right ventricular myocardium: are they different diseases? Circulation. 1998;97:1571–80.PubMedCrossRefGoogle Scholar
  88. 88.
    Shirani J, Berezowski K, Roberts WC. Quantitative measurement of normal adipose and excessive (cor adiposum) subepicardial adipose tissue, its clinical significance and its effect on electrocardiographic QRS voltage. Am J Cardiol. 1995;76:414–8.PubMedCrossRefGoogle Scholar
  89. 89.
    De Pasquale CG, Heddle WF. Left sided arrhythmogenic ventricular dysplasia in siblings. Heart. 2001;86:128–30.PubMedCrossRefGoogle Scholar
  90. 90.
    Michalodimitrakis M, Papadomanolakis A, Stiakakis J, et al. Left side right ventricular cardiomyopathy. Med Sci Law. 2002;42:313–7.PubMedGoogle Scholar
  91. 91.
    Shirani J, Roberts WC. Subepicardial myocardial lesions. Am Heart J. 1993;125:1346–52.PubMedCrossRefGoogle Scholar
  92. 92.
    Nava A, Bauce B, Basso C, et al. Clinical profile and long-term follow-up of 37 families with arrhythmogenic right ventricular cardiomyopathy. J Am Coll Cardiol. 2000;36:2226–33.PubMedCrossRefGoogle Scholar
  93. 93.
    Nava A, Thiene G, Canciani B, et al. Familial occurrence of right ventricular dysplasia: a study involving nine families. J Am Coll Cardiol. 1988;12:1222–8.PubMedCrossRefGoogle Scholar
  94. 94.
    Syrris P, Ward D, Asimaki A, et al. Clinical expression of plakophilin-2 mutations in familial arrhythmogenic right ventricular cardiomyopathy. Circulation. 2006;113:356–64.PubMedCrossRefGoogle Scholar
  95. 95.
    Syrris P, Ward D, Asimaki A, et al. Desmoglein-2 mutations in arrhythmogenic right ventricular cardiomyopathy: a genotype-phenotype characterization of familial disease. Eur Heart J. 2007;28:581–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Rampazzo A, Nava A, Malacrida S, et al. Mutation in human desmoplakin binding domain binding to plakoglobin causes a dominant form of arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet. 2002;71:1200–6.PubMedCrossRefGoogle Scholar
  97. 97.
    Kaplan SR, Gard JJ, Carvajal-Huerta L, et al. Structural and molecular pathology of the heart in Carvajal syndrome. Cardiovasc Pathol. 2004;13:26–32.PubMedCrossRefGoogle Scholar
  98. 98.
    Heuser A, Plovie ER, Ellinor PT, et al. Mutant desmocollin-2 causes arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet. 2006;79:1081–8.PubMedCrossRefGoogle Scholar
  99. 99.
    Pilichou K, Nava A, Basso C, et al. Mutations in desmoglein-2 gene are associated with arrhythmogenic right ventricular cardiomyopathy. Circulation. 2006;113:1171–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Sen-Chowdhry S, Syrris P, McKenna W. Genetics of right ­ventricular cardiomyopathy. J Cardiovasc Electrophysiol. 2005;16:927–35.PubMedCrossRefGoogle Scholar
  101. 101.
    Dokuparti MV, Pamuru PR, Thakkar B, et al. Etiopathogenesis of arrhythmogenic right ventricular cardiomyopathy. J Hum Genet. 2005;50:375–81.PubMedCrossRefGoogle Scholar
  102. 102.
    MacRae CA, Birchmeier W, Thierfelder L. Arrhythmogenic right ventricular cardiomyopathy; moving towards mechanism. J Clin Invest. 2006;116:1825–8.PubMedCrossRefGoogle Scholar
  103. 103.
    Mallat Z, Tedgui A, Fontaliran F, et al. Evidence of apoptosis in arrhythmogenic right ventricular dysplasia. N Engl J Med. 1996;335:1190–6.PubMedCrossRefGoogle Scholar
  104. 104.
    Valente M, Calabrese F, Thiene G, et al. In vivo evidence of apoptosis in arrhythmogenic right ventricular cardiomyopathy. Am J Pathol. 1998;152:479–84.PubMedGoogle Scholar
  105. 105.
    Garcia-Gras E, Lombardi R, Giocondo MJ, et al. Suppression of canonical Wnt/beta-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. J Clin Invest. 2006;116:2012–21.PubMedCrossRefGoogle Scholar
  106. 106.
    Heidbuchel H, Hoogsteen J, Fagard R, et al. High prevalence of right ventricular involvement in endurance athletes with ventricular arrhythmias. Role of an electrophysiologic study in risk stratification. Eur Heart J. 2003;24:1473–80.PubMedCrossRefGoogle Scholar
  107. 107.
    Marcus F, Towbin JA. The mystery of arrhythmogenic right ventricular dysplasia/cardiomyopathy: from observation to mechanistic explanation. Circulation. 2006;114:1794–5.PubMedCrossRefGoogle Scholar
  108. 108.
    Kirchhof P, Fabritz L, Zwiener M, et al. Age and training dependent development of arrhythmogenic right ventricular cardiomyopathy in heterozygous plakoglobin deficient mice. Circulation. 2006;113:1799–806.CrossRefGoogle Scholar
  109. 109.
    Bauce B, Basso C, Rampazzo A, et al. Clinical profile of four families with arrhythmogenic right ventricular cardiomyopathy caused by dominant desmoplakin mutations. Eur Heart J. 2005;26:1666–75.PubMedCrossRefGoogle Scholar
  110. 110.
    Antoniades L, Tsatsopoulou A, Anastasakis A. Arrhythmogenic right ventricular cardiomyopathy caused by deletions in plakophilin-2 and plakoglobin (Naxos disease) in families from Greece and Cyprus: genotype-phenotype relations, diagnostic features and prognosis. Eur Heart J. 2006;27:2208–16.PubMedCrossRefGoogle Scholar
  111. 111.
    McKoy G, Protonotarios N, Crosby A, et al. Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and woolly hair (Naxos disease). Lancet. 2000;355:2119–24.PubMedCrossRefGoogle Scholar
  112. 112.
    Alcalai R, Metzger S, Rosenheck S, et al. A recessive mutation in desmoplakin causes arrhythmogenic right ventricular dysplasia, skin disorder and woolly hair. J Am Coll Cardiol. 2003;42:319–27.PubMedCrossRefGoogle Scholar
  113. 113.
    Protonotarios P, Tsatsopoulou A. Naxos disease and Carvajal syndrome: cardiocutaneous disorders that highlight the pathogenesis and broaden the spectrum of arrhythmogenic right ventricular cardiomyopathy. Cardiovasc Pathol. 2004;13:418–21.CrossRefGoogle Scholar
  114. 114.
    Coonar AS, Protonoarius N, Tsatsopoulou A, et al. Gene for arrhythmogenic right ventricular cardiomyopathy with diffuse nonepidermolytic palmoplantar keratoderma and woolly hair (Naxos disease) maps to 17q21. Circulation. 1998;97:2049–58.PubMedCrossRefGoogle Scholar
  115. 115.
    Norgett EE, Hatsell SJ, Carvajal-Huerta L, et al. Recessive mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum Mol Genet. 2000;9:2761–6.PubMedCrossRefGoogle Scholar
  116. 116.
    Tiso N, Stephan DA, Nava A, et al. Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2). Hum Mol Genet. 2001;10:189–94.PubMedCrossRefGoogle Scholar
  117. 117.
    Beffagna G, Occhi G, Nava A, et al. Regulatory mutations in transforming growth factor-[beta]3 gene cause arrhythmogenic right ventricular cardiomyopathy type 1. Cardiovasc Res. 2005;65:366–73.PubMedCrossRefGoogle Scholar
  118. 118.
    Merner ND, Hodgkinson KA, Haywood AFM, et al. Arrhythmogenic right ventricular cardiomyopathy type 5 is a fully penetrant, lethal arrhythmic disorder caused by a missense mutation in the TMEM43 gene. Am J Hum Genet. 2008;82:809–21.PubMedCrossRefGoogle Scholar
  119. 119.
    Klein AL, Asher CR. Diseases of the Pericardium, Restrictive Cardiomyopathy and Diastolic Dysfunction. In: Topol EJ, editor. Textbook of cardiovas-cular medicine. Philadelphia: Lippincott-Raven Publishers; 1998, p595–646.Google Scholar
  120. 120.
    Child JS, Perloff JK. The restrictive cardiomyopathies. Cardiol Clin. 1988;6:289–316.PubMedGoogle Scholar
  121. 121.
    Fitzpatrick AP, Shapiro LM, Rickards AF, et al. Familial restrictive cardiomyopathy with atrioventricular block and skeletal myopathy. Br Heart J. 1990;63:114–8.PubMedCrossRefGoogle Scholar
  122. 122.
    Cubero GI, Larraya GL, Reguero JR. Familial restrictive cardiomyopathy with atrioventricular block without skeletal myopathy. Exp Clin Cardiol. 2006;12:54–5.Google Scholar
  123. 123.
    Benotti JR, Grossman W, Cohn PF. Clinical profile of restrictive cardiomyopathy. Circulation. 1980;61:1206–12.PubMedCrossRefGoogle Scholar
  124. 124.
    Spry CJ, Take M, Tai PC. Eosinophilic disorders affecting the myocardium and endocardium: a review. Heart Vessels Suppl. 1985;1:240–2.PubMedCrossRefGoogle Scholar
  125. 125.
    Davies JNP. Endomyocardial fibrosis. A heart disease of obscure aetiology in Africans. MD thesis. Bristol: Bristol University; 1948Google Scholar
  126. 126.
    Parrillo JE. Heart disease and the eosinophil. N Engl J Med. 1990;323:1560–1.PubMedCrossRefGoogle Scholar
  127. 127.
    Gupta PN, Valiathan MS, Balakrishnan KG, et al. Clinical course of endomyocardial fibrosis. Br Heart J. 1989;62:450–4.PubMedCrossRefGoogle Scholar
  128. 128.
    Chopra P, Narula J, Talwar KK, et al. Histomorphologic characteristics of endomyocardial fibrosis: an endomyocardial biopsy study. Hum Pathol. 1990;21:613–6.PubMedCrossRefGoogle Scholar
  129. 129.
    Mady C, Pereira Barretto AC, de Oliveira SA, et al. Effectiveness of operative and nonoperative therapy of endomyocardial fibrosis. Am J Cardiol. 1989;63:1281–2.PubMedCrossRefGoogle Scholar
  130. 130.
    de Oliveira SA, Pereira Barretto AC, Mady C. Surgical treatment of endomyocardial fibrosis: a new approach. J Am Coll Cardiol. 1990;16:1246–51.PubMedCrossRefGoogle Scholar
  131. 131.
    Mocumbi AO, Latif N, Yacoub MH. Presence of circulating anti-myosin antibodies in endomyocardial fibrosis. PloS Negl Trop Dis. 2010;20:e661.CrossRefGoogle Scholar
  132. 132.
    Andy JJ. Aetiology of endomyocardial fibrosis (EMF). West Afr J Med. 2001;20:199–207.PubMedGoogle Scholar
  133. 133.
    Roberts WC, Buja LM, Ferrans VJ. Loeffler’s fibroplastic parietal endocarditis, eosinophilic leukaemia, and Davies’ endomyocardial fibrosis: the same disease at different stages? Pathol Microbiol (Basel). 1970;35:90–5.Google Scholar
  134. 134.
    Davies J, Spry CJ, Vijayaraghavan G, De Souza JA. A comparison of the clinical and cardiological features of endomyocardial disease in temperate and tropical regions. Postgrad Med J. 1983;59:179–85.PubMedCrossRefGoogle Scholar
  135. 135.
    De Mello DE, Liapis H, Jureidini S, et al. Cardiac localization of eosinophil-granule major basic protein in acute necrotizing myocarditis. N Engl J Med. 1990;323:1542–5.CrossRefGoogle Scholar
  136. 136.
    Kholova I, Niessen HWM. Amyloid in the cardiovascular system: a review. J Clin Pathol. 2005;58:125–33.PubMedCrossRefGoogle Scholar
  137. 137.
    Bigoni R, Cuneo A, Roberti MG, et al. Cytogenetic and mol­ecular cytogenetic characterization of 6 new cases of idiopathic hypereosinophilic syndrome. Haematologica. 2000;85:486–91.PubMedGoogle Scholar
  138. 138.
    Kyle RA. Amyloidosis. Circulation. 1995;91:1269–71.PubMedCrossRefGoogle Scholar
  139. 139.
    Westermark P, Bergstrom J, Solomon A. Transthyretin-derived senile systemic amyloidosis: clinicopathologic and structural considerations. Amyloid. 2003;10(Suppl I):48–54.PubMedGoogle Scholar
  140. 140.
    Cornwell III GG, Murdoch W, Kyle RA, et al. Frequency and distribution of senile cardiovascular amyloid. A clinicopathologic correlation. Am J Med. 1983;75:618–23.PubMedCrossRefGoogle Scholar
  141. 141.
    Pitkanen P, Westermark P, Cornwell III GG. Senile systemic amyloidosis. Am J Path. 1984;117:391–9.PubMedGoogle Scholar
  142. 142.
    Steiner I. The prevalence of isolated atrial amyloid. J Pathol. 1987;153:395–8.PubMedCrossRefGoogle Scholar
  143. 143.
    Rocken C, Peters B, Juenemann G, et al. Atrial amyloidosis. An arrhythmogenic substrate for persistent atrial fibrillation. Circu­­lation. 2002;106:2091–7.PubMedCrossRefGoogle Scholar
  144. 144.
    Hamidi Asl, Liepniks JJ, Hamidi Asl K. Hereditary amyloid cardiomyopathy caused by a variant apolipoprotein A1. Am J Pathol. 1999;154:221–7.CrossRefGoogle Scholar
  145. 145.
    Arbustini E, Gavazzi A, Merlini G. Fibril-forming proteins: the amyloidosis. New hopes for a disease that cardiologists must know. Ital Heart J. 2002;3:590–7.Google Scholar
  146. 146.
    Yazaki M, Liepniks JJ, Barats MS, et al. Hereditary systemic amyloidosis associated with a new apolipoprotein AII stop codon mutation Stop78Arg. Kidney Int. 2003;64:11–6.PubMedCrossRefGoogle Scholar
  147. 147.
    Saraiva MJ. Transythretin mutations in health and disease. Hum Mutat. 1995;5:191–6.PubMedCrossRefGoogle Scholar
  148. 148.
    Saito F, Nakazato M, Akiyama H, et al. A case of late onset cardiac amyloidosis with a new transthyretin variant (Lysine 92). Hum Pathol. 2001;32:237–9.PubMedCrossRefGoogle Scholar
  149. 149.
    Saraiva MJ, Almeida MdoR, Sherman W. A new transthyretin mutation associated with amyloid cardiomyopathy. Am J Hum Genet. 1992;50:1027–30.PubMedGoogle Scholar
  150. 150.
    Magnus JH, Stenstad K, Kolset SO. Glycosaminoglycans in extracts of cardiac amyloid fibrils from familial amyloid cardiomyopathy of Danish origin related to variant transthyretin Met 111. Scand J Immunol. 1991;34:63–9.PubMedCrossRefGoogle Scholar
  151. 151.
    Falk RH, Comenzo RL, Skinner M. The systemic amyloidoses. N Engl J Med. 1997;337:898–909.PubMedCrossRefGoogle Scholar
  152. 152.
    Roberts WC, Waller BF. Cardiac amyloidosis causing cardiac dysfunction: analysis of 54 necropsy patients. Am J Cardiol. 1983;52:137–46.PubMedCrossRefGoogle Scholar
  153. 153.
    Smith TJ, Kyle RA, Lie JT. Clinical significance of histopathologic patterns of cardiac amyloidosis. Mayo Clin Proc. 1984;59:547–55.PubMedGoogle Scholar
  154. 154.
    Booth DR, Tan SY, Hawkins PN, et al. A novel variant of transthyretin, 59Thr-Lys, associated with autosomal dominant cardiac amyloidosis in an Italian family. Circulation. 1995;91:962–7.PubMedCrossRefGoogle Scholar
  155. 155.
    Newman LS, Rose CS, Maier LA. Sarcoidosis. New Engl J Med. 1997;336:1224–34.PubMedCrossRefGoogle Scholar
  156. 156.
    Chapelon-Abric C, de Zuttere D, Duhaut P, et al. Cardiac sarcoidosis: a retrospective study of 41 cases. Medicine (Baltimore). 2004;83:315–34.CrossRefGoogle Scholar
  157. 157.
    Silverman KJ, Hutchins GM, Bulkley BH. Cardiac sarcoid: a clinicopathologic study of 84 unselected patients with systemic sarcoidosis. Circulation. 1978;58:1204–11.PubMedCrossRefGoogle Scholar
  158. 158.
    Perry A, Vuitch F. Causes of death in patients with sarcoidosis: a morphologic study of 38 autopsies with clinicopathologic correlations. Arch Pathol Lab Med. 1995;119:1767–72.Google Scholar
  159. 159.
    Roberts WC, McAllister HA, Ferrans VJ. Sarcoidosis of the heart. Am J Med. 1977;63:86–108.PubMedCrossRefGoogle Scholar
  160. 160.
    Lagana SM, Parwani A, Nichols LC. Cardiac sarcoidosis. A pathology-focused review. Arch Pathol Lab Med. 2010;134:1039–46.PubMedGoogle Scholar
  161. 161.
    Hauser SC. Hemochromatosis and the heart. Heart Dis Stroke. 1993;2:487–91.PubMedGoogle Scholar
  162. 162.
    Zaahl MG, Merryweather-Clarke AT, Kotze MJ, et al. Analysis of genes implicated in iron regulation in individuals presenting with primary iron overload. Hum Genet. 2004;115:409–17.PubMedCrossRefGoogle Scholar
  163. 163.
    Olson LJ, Edwards WD, McCall JT, et al. Cardiac iron deposition in idiopathic hemochromatosis: histologic and analytic assessment of 14 hearts from autopsy. J Am Coll Cardiol. 1987;10:1239–43.PubMedCrossRefGoogle Scholar
  164. 164.
    Cecchetti G, Binda A, Piperno A, et al. Cardiac alterations in 36 consecutive patients with idiopathic hemochromatosis: polygraphic and echocardiographic evaluation. Eur Heart J. 1991;12:224–30.PubMedGoogle Scholar
  165. 165.
    Linhart A, Palecek T, Bultas J, et al. New insights in cardiac structural changes in patients with Fabry’s disease. Am Heart. 2000;139:1101–8.CrossRefGoogle Scholar
  166. 166.
    Beer G, Reinecke P, Gabbert HE, Hort W, Kuhn H. Fabry disease in patients with hypertrophic cardiomyopathy (HCM). Z Kardiol. 2002;91:992–1002.PubMedCrossRefGoogle Scholar
  167. 167.
    Ommen SR, Nishimura RA, Edwards WD. Fabry disease: a mimic for obstructive hypertrophic cardiomyopathy? Heart. 2003;89:929–30.PubMedCrossRefGoogle Scholar
  168. 168.
    Nakao S, Takenaka T, Maeda M, et al. An atypical variant of Fabry’s disease in men with left ventricular hypertrophy. N Engl J Med. 1995;333:288–93.PubMedCrossRefGoogle Scholar
  169. 169.
    Nagueh SF. Fabry disease. Heart. 2003;89:819–20.PubMedCrossRefGoogle Scholar
  170. 170.
    Frustaci A, Chimenti C, Ricci R, et al. Improvement in cardiac function in the cardiac variant of Fabry’s disease with galactose-infusion therapy. N Engl J Med. 2001;345:25–32.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Department of HistopathologyUniversity College Hospital LondonLondonUK

Personalised recommendations