Echocardiography of the Right Heart

  • Robert Naeije
  • Bouchra Lamia


Echocardiography allows for accurate measurements of pulmonary vascular resistance and hydraulic load, and thus the estimation of afterload in severe pulmonary hypertension as a cause of right ventricular (RV) failure. The procedure also provides a series of estimates of RV systolic function, such as fractional area change, tricuspid annular plane excursion, tricuspid annulus tissue Doppler imaging of the velocities of isovolumic contraction and ejection, strain and strain rate. These indices help to evaluate the adequacy of RV systolic function adaptation to afterload (Anrep mechanism) but suffer from variable degrees of preload-dependency. Failure of RV-arterial coupling results in Starling’s mechanism of preservation of stroke volume through increased myocardial fibre length, or end-diastolic volume. This can be appreciated by echocardiographic measurements of increased right heart chamber dimensions, dilatation and loss of inspiratory collapsibility of the inferior vena cava, and pericardial effusion, along with altered indices of left ventricular diastolic function such as prolonged isovolumic relaxation time, deceleration of E waves, and decreased ratio of E over A waves. Echocardiographic dimension measurements are currently limited to a series of planes, with difficult instantaneous volume reconstruction of the RV, which has an irregular crescent shape and inhomogenous contraction. Echocardiography is limited by operator-dependency, and is sometimes implemented in low clinical probability contexts. This may be a cause of false positive or negative diagnosis of RV failure. Recent advances in echocardiography technology open the perspective of RV volume measurements with assessment of regional function and asynchrony.


Pulmonary Hypertension Right Ventricular Pulmonary Arterial Hypertension Pulmonary Artery Pressure Right Ventricular Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Galiè N, Hoeper M, Humbert M, Torbicki A, Vachiéry JL, Barbera J, Beghetti M, Corris P, Gaine S, Gibbs S, Gomez-Sanchez M, Jondeau C, Klepetko W, Opitz C, Peacock A, Rubin L, Zellweger M, Simonneau G, Task force for diagnosis and treatment of pulmonary hypertension of European Society of Cardiology (ESC); European Respiratory Society (ERS); International Society of Heart and Lung Transplantation (ISHLT). Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J. 2009;34:1219–63.PubMedCrossRefGoogle Scholar
  2. 2.
    McLaughlin VV, Archer SL, Badesch DB, et al. ACCF/AHA 2009 expert consensus document on pulmonary hypertension. A report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association. Circulation. 2009;119:2250–94.PubMedCrossRefGoogle Scholar
  3. 3.
    Fisher MR, Forfia PR, Chamera E, Housten-Harris T, Champion HC, Girgis RE, Corretti MC, Hassoun PM. Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension. Am J Respir Crit Care Med. 2009;179:615–21.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Rich JD, Shah SJ, Swamy RS, Kamp A, Rich S. Inaccuracy of Doppler echocardiographic estimates of pulmonary artery pressures in patients with pulmonary hypertension. Chest. 2011;139:988–93.PubMedCrossRefGoogle Scholar
  5. 5.
    Rich JD. Counterpoint: can Doppler echocardiography estimates of pulmonary artery systolic pressures be relied upon to accurately make the diagnosis of pulmonary hypertension? No. Chest. 2013;143:1536–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Rudski LG. Point: can Doppler echocardiography estimates of pulmonary artery systolic pressures be relied upon to accurately make the diagnosis of pulmonary hypertension? Yes. Chest. 2013;143:1533–6.PubMedCrossRefGoogle Scholar
  7. 7.
    D'Alto M, Romeo E, Argiento P, D'Andrea A, Vanderpool R, Correra A, Bossone E, Sarubbi B, Calabrò R, Russo MG, Naeije R. Accuracy and precision of echocardiography versus right heart catheterization for the assessment of pulmonary hypertension. Int J Cardiol. 2013;168:4058–62.PubMedCrossRefGoogle Scholar
  8. 8.
    Naeije R, Vanderpool R, Dhakal BP, Saggar R, Saggar R, Vachiery JL, Lewis GD. Exercise-induced pulmonary hypertension physiological basis and methodological concerns. Am J Respir Crit Care Med. 2013;187:576–853.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, Solomon SD, Louie EK, Schiller NB. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23:685–713.PubMedCrossRefGoogle Scholar
  10. 10.
    Bossone E, D'Andrea A, D'Alto M, Citro R, Argiento P, Ferrara F, Cittadini A, Rubenfire M, Naeije R. Echocardiography in pulmonary arterial hypertension: from diagnosis to prognosis. J Am Soc Echocardiogr. 2013;26:1–14.PubMedCrossRefGoogle Scholar
  11. 11.
    Yock PG, Popp RL. Noninvasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation. Circulation. 1984;70:657–62.PubMedCrossRefGoogle Scholar
  12. 12.
    Hatle L, Angleson B. Doppler ultrasound in cardiology: physical principles and clinical applications. 2nd ed. Philadelphia: Lea & Febiger; 1985. p. 252–63.Google Scholar
  13. 13.
    Kircher BJ, Himelman RB, Schiller NB. Noninvasive estimation of right atrial pressure from the inspiratory collapse of the inferior vena cava. Am J Cardiol. 1990;66:493–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Chemla D, Castelain V, Humbert M, Hébert JL, Simonneau G, Lecarpentier Y, Hervé P. New formula for predicting mean pulmonary artery pressure using systolic pulmonary artery pressure. Chest. 2004;126:1313–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Naeije R, Torbicki A. More on the noninvasive diagnosis of pulmonary hypertension. Doppler echocardiography revisited (editorial). Eur Respir J. 1995;8:1445–9.PubMedGoogle Scholar
  16. 16.
    Grünig E, Weissmann S, Ehlken N, et al. Stress-Doppler-echocardiography in relatives of patients with idiopathic and familial pulmonary arterial hypertension: results of a multicenter European analysis of pulmonary artery pressure response to exercise and hypoxia. Circulation. 2009;119:1747–57.PubMedCrossRefGoogle Scholar
  17. 17.
    Lancellotti P, Magne J, Donal E, O’Connor K, Dulgheru R, Rosca M, Pierard LA. Determinants and prognostic significance of exercise pulmonary hypertension in asymptomatic severe aortic stenosis. Circulation. 2012;126:851–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Magne J, Lancellotti P, Piérard LA. Exercise pulmonary hypertension in asymptomatic degenerative mitral regurgitation. Circulation. 2010;122:33–41.PubMedCrossRefGoogle Scholar
  19. 19.
    Argiento P, Chesler N, Mulè M, D'Alto M, Bossone E, Unger P, Naeije R. Exercise stress echocardiography for the study of the pulmonary circulation. Eur Respir J. 2010;35:1273–8.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Argiento P, Vanderpool RR, Mule M, Russo MG, D'Alto M, Bossone E, Chesler NC, Naeije R. Exercise stress echocardiography of th pulmonary circulation: limits of normal and sex differences. Chest. 2012;590:4279–88.Google Scholar
  21. 21.
    Groepenhoff H, Overbeek MJ, Mulè M, van der Plas M, Argiento P, Villafuerte FC, Beloka S, Faoro V, Macarlupu JL, Guenard H, de Bisschop C, Martinot JB, Vanderpool R, Penaloza D, Naeije R. Exercise pathophysiology in patients with chronic mountain sickness. Chest. 2012;142:877–84.PubMedCrossRefGoogle Scholar
  22. 22.
    Lalande S, Yerly P, Faoro V, Naeije R. Pulmonary vascular distensibility predicts aerobic capacity in healthy individuals. J Physiol. 2012;590:4279–88.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Lewis GD, Bossone E, Naeije R, Grünig E, Saggar R, Lancellotti P, Ghio S, Varga J, Rajagopalan S, Oudiz R, Rubenfire M. Pulmonary vascular hemodynamic response to exercise in cardiopulmonary diseases. Circulation. 2013;128:1470–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Christie J, Sheldahl LM, Tristani FE, Sagar KB, Ptacin MJ, Wann S. Determination of stroke volume and cardiac output during exercise: comparison of two-dimensional and Doppler echocardiography, Fick oximetry, and thermodilution. Circulation. 1987;76:539–47.PubMedCrossRefGoogle Scholar
  25. 25.
    Abbas AE, Fortuin FD, Schiller NB, Appleton CP, Moreno CA, Lester SJ. A simple method for noninvasive estimation of pulmonary vascular resistance. J Am Coll Cardiol. 2003;41:1021–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Nagueh S, Middleton K, Kopelen H, Zoghbi W, Quinones M. Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol. 1997;30:1527–33.PubMedCrossRefGoogle Scholar
  27. 27.
    Lindqvist P, Söderberg S, Gonzalez MC, Tossavainen E. Henein MY Echocardiography based estimation of pulmonary vascular resistance in patients with pulmonary hypertension: a simultaneous Doppler echocardiography and cardiac catheterization study. Eur J Echocardiogr. 2011;12:961–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Kitabatake A, Inoue M, Asao M, et al. Noninvasive evaluation of pulmonary hypertension by a pulsed Doppler technique. Circulation. 1983;68:302–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Huez S, Roufosse F, Vachièry JL, Pavelescu A, Derumeaux G, Wautrecht JC, Cogan E, Naeije R. Isolated right ventricular dysfunction in systemic sclerosis: latent pulmonary hypertension? Eur Respir J. 2007;30:928–36.PubMedCrossRefGoogle Scholar
  30. 30.
    Hardziyenka M, Reesink HJ, Bouma BJ, de Bruin-Bon HA, Campian ME, Tanck MW, van den Brink RB, Kloek JJ, Tan HL, Bresser P. A novel echocardiographic predictor of in-hospital mortality and mid-term haemodynamic improvement after pulmonary endarterectomy for chronic thrombo-embolic pulmonary hypertension. Eur Heart J. 2007;28:842–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Naeije R, Huez S. Reflections on wave reflections in chronic thromboembolic pulmonary hypertension. Eur Heart J. 2007;28:785–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Arkles JS, Opotowsky AR, Ojeda J, Rogers F, Liu T, Prassana V, Marzec L, Palevsky HI, Ferrari VA, Forfia PR. Shape of the right ventricular Doppler envelope predicts hemodynamics and right heart function in pulmonary hypertension. Am J Respir Crit Care Med. 2011;183:268–76.PubMedCrossRefGoogle Scholar
  33. 33.
    Tossavainen E, Söderberg S, Grönlund C, Gonzalez M, Henein MY, Lindqvist P. Pulmonary artery acceleration time in identifying pulmonary hypertension patients with raised pulmonary vascular resistance. Eur Heart J Cardiovasc Imaging. 2013;14:890–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Bland JM, Altman DG. Statistical methods for assessing agreement between two different methods of clinical measurement. Lancet. 1986;1:307–10.PubMedCrossRefGoogle Scholar
  35. 35.
    Pagnamenta A, Vanderpool RR, Brimioulle S, Naeije R. Proximal pulmonary arterial obstruction decreases the time constant of the pulmonary circulation and increases right ventricular afterload. J Appl Physiol. 2013;114:1586–92.PubMedCrossRefGoogle Scholar
  36. 36.
    Hoeper MM, Maier R, Tongers J, Niedermeyer J, Hohlfeld JM, Hamm M, Fabel H. Determination of cardiac output by the Fick method, thermodilution, and acetylene rebreathing in pulmonary hypertension. Am J Respir Crit Care Med. 1999;160:535–41.PubMedCrossRefGoogle Scholar
  37. 37.
    Halpern SD, Taichman DB. Misclassification of pulmonary hypertension due to reliance on pulmonary capillary wedge pressure rather than left ventricular end-diastolic pressure. Chest. 2009;136:37–43.PubMedCrossRefGoogle Scholar
  38. 38.
    Vonk-Noordegraaf A, Westerhof N. Describing right ventricular function. Eur Respir J. 2013;41:1419–23.PubMedCrossRefGoogle Scholar
  39. 39.
    Chesler NC, Roldan A, Vanderpool RR, Naeije R. How to measure pulmonary vascular and right ventricular function. Conf Proc IEEE Eng Med Biol Soc. 2009;1:177–80.Google Scholar
  40. 40.
    Sagawa K, Maughan L, Suga H, Sunagawa K. Cardiac contraction and the pressure-volume relationship. New York: Oxford University Press; 1988.Google Scholar
  41. 41.
    Sniderman AD, Fitchett DH. Vasodilators and pulmonary arterial hypertension: the paradox of therapeutic success and clinical failure. Int J Cardiol. 1988;20:173–81.PubMedGoogle Scholar
  42. 42.
    Lankhaar JW, Westerhof N, Faes TJ, Gan CT, Marques KM, Boonstra A, van den Berg FG, Postmus PE, Vonk-Noordegraaf A. Pulmonary vascular resistance and compliance stay inversely related during treatment of pulmonary hypertension. Eur Heart J. 2008;29:1688–95.PubMedCrossRefGoogle Scholar
  43. 43.
    Saouti N, Westerhof N, Helderman F, Marcus JT, Boonstra A, Postmus PE, Vonk-Noordegraaf A. Right ventricular oscillatory power is a constant fraction of total power irrespective of pulmonary artery pressure. Am J Respir Crit Care Med. 2010;182:1315–20.PubMedCrossRefGoogle Scholar
  44. 44.
    Tedford RJ, Hassoun PM, Mathai SC, Girgis RE, Russell SD, Thiemann DR, Cingolani OH, Mudd JO, Borlaug BA, Redfield MM, Lederer DJ, Kass DA. Pulmonary capillary wedge pressure augments right ventricular pulsatile loading. Circulation. 2012;125:|289–97.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Mackenzie Ross RV, Toshner MR, Soon E, Naeije R, Pepke-Zaba J. Decreased time constant of the pulmonary circulation in chronic thromboembolic pulmonary hypertension. Am J Physiol Heart Circ Physiol. 2013;15(305):H259–64.CrossRefGoogle Scholar
  46. 46.
    Suga H, Sagawa K, Shoukas AA. Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res. 1973;32:314–22.PubMedCrossRefGoogle Scholar
  47. 47.
    Maughan WL, Shoukas AA, Sagawa K, Weisfeldt ML. Instantaneous pressure-volume relationship of the canine right ventricle. Circ Res. 1979;44:309–15.PubMedCrossRefGoogle Scholar
  48. 48.
    Sunagawa K, Yamada A, Senda Y, Kikuchi Y, Nakamura M, Shibahara T. Estimation of the hydromotive source pressure from ejecting beats of the left ventricle. IEEE Trans Biomed Eng. 1980;57:299–305.CrossRefGoogle Scholar
  49. 49.
    Brimioulle S, Wauthy P, Ewalenko P, Rondelet B, Vermeulen F, Kerbaul F, Naeije R. Single-beat estimation of right ventricular end-systolic pressure-volume relationship. Am J Physiol Heart Circ Physiol. 2003;284:H1625–30.PubMedGoogle Scholar
  50. 50.
    Kuehne T, Yilmaz S, Steendijk P, Moore P, Groenink M, Saaed M, et al. Magnetic resonance imaging analysis of right ventricular pressure-volume loops: in vivo validation and clinical application in patients with pulmonary hypertension. Circulation. 2004;110:2010–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Tedford RJ, Mudd JO, Girgis RE, Mathai SC, Zaiman AL, Housten-Harris T, et al. Right ventricular dysfunction in systemic sclerosis associated pulmonary arterial hypertension. Circ Heart Fail. 2013;6(5):953–63.PubMedCrossRefGoogle Scholar
  52. 52.
    Wauthy P, Naeije R, Brimioulle S. Left and right ventriculo-arterial coupling in a patient with congenitally corrected transposition. Cardiol Young. 2005;15:647–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Ensing G, Seward J, Darragh R, Caldwell R. Feasibility of generating hemodynamic pressure curves from noninvasive Doppler echocardiographic signals. J Am Coll Cardiol. 1994;23:434–42.PubMedCrossRefGoogle Scholar
  54. 54.
    Imanishi T, Nakatani S, Yamada S, Nakanishi N, Beppu S, Nagata S, Miyatake K. Validation of continuous wave Doppler-determined right ventricular peak positive and negative dP/dt: effect of right atrial pressure on measurement. J Am Coll Cardiol. 1994;23:1638–43.PubMedCrossRefGoogle Scholar
  55. 55.
    López-Candales A, Rajagopalan N, Gulyasy B, Edelman K, Bazaz R. A delayed time of the peak tricuspid regurgitation signal: marker of right ventricular dysfunction. Am J Med Sci. 2008;336:224–49.PubMedCrossRefGoogle Scholar
  56. 56.
    Ghio S, Klersy C, Magrini G, D'Armini AM, Scelsi L, Raineri C, Pasotti M, Serio A, Campana C, Viganò M. Prognostic relevance of the echocardiographic assessment of right ventricular function in patients with idiopathic pulmonary arterial hypertension. Int J Cardiol. 2010;140:272–8.PubMedGoogle Scholar
  57. 57.
    Ghio S, Recusani F, Klersy C, Sebastiani R, Laudisa ML, Campana C, Gavazzi A, Tavazzi L. Prognostic usefulness of the tricuspid annular plane systolic excursion in patients with congestive heart failure secondary to idiopathic or ischemic dilated cardiomyopathy. Am J Cardiol. 2000;85:837–42.PubMedCrossRefGoogle Scholar
  58. 58.
    Forfia PR, Fisher MR, Mathai SC, Housten-Harris T, Hemnes AR, Borlaug BA, Chamera E, Corretti MC, Champion HC, Abraham TP, Girgis RE, Hassoun PM. Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med. 2006;174:1034–41.PubMedCrossRefGoogle Scholar
  59. 59.
    Meluzín J, Spinarová L, Bakala J, Toman J, Krejcí J, Hude P, Kára T, Soucek M. Pulsed Doppler tissue imaging of the velocity of tricuspid annular systolic motion; a new, rapid, and non-invasive method of evaluating right ventricular systolic function. Eur Heart J. 2001;22:340–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Saxena N, Rajagopalan N, Edelman K, López-Candales A. Tricuspid annular systolic velocity: a useful measurement in determining right ventricular systolic function regardless of pulmonary artery pressures. Echocardiography. 2006;23:750–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Vogel M, Schmidt MR, Christiansen SB, et al. Validation of myocardial acceleration during isovolumic contraction as a novel non-invasive index of right ventricular contractility. Circulation. 2003;105:1693–9.CrossRefGoogle Scholar
  62. 62.
    Ernande L, Cottin V, Leroux PY, Girerd N, Huez S, Mulliez A, Bergerot C, Ovize M, Mornex JF, Cordier JF, Naeije R, Derumeaux G. Right isovolumic contraction velocity predicts survival in pulmonary hypertension. J Am Soc Echocardiogr. 2013;26:297–306.PubMedCrossRefGoogle Scholar
  63. 63.
    Jamal F, Bergerot C, Argaud L, Loufouat J, Ovize M. Longitudinal strain quantitates regional right ventricular contractile function. Am J Physiol Heart Circ Physiol. 2003;285:H2842–7.PubMedGoogle Scholar
  64. 64.
    Dambrauskaite V, Delcroix M, Claus P, et al. Regional right ventricular dysfunction in chronic pulmonary hypertension. J Am Soc Echocardiogr. 2010;2007:1172–80.Google Scholar
  65. 65.
    Huez S, Vachiéry JL, Unger P, Brimioulle S, Naeije R. Tissue Doppler imaging evaluation of cardiac adaptation to severe pulmonary hypertension. Am J Cardiol. 2007;100:1473–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Huez S, Vachiéry JL, Naeije R. Improvement in right ventricular function during reversibility testing in pulmonary arterial hypertension: a case report. Cardiovasc Ultrasound. 2009;7:9.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Sachdev A, Villarraga HR, Frantz RP, McGoon MD, Hsiao JF, Maalouf JF, Ammash NM, McCully RB, Miller FA, Pellikka PA, Oh JK, Kane GC. Right ventricular strain for prediction of survival in patients with pulmonary arterial hypertension. Chest. 2011;139:1299–309.PubMedCrossRefGoogle Scholar
  68. 68.
    Fine NM, Chen L, Bastiansen PM, Frantz RP, Pellikka PA, Oh JK, Kane GC. Outcome prediction by quantitative right ventricular function assessment in 575 subjects evaluated for pulmonary hypertension. Circ Cardiovasc Imaging. 2013;6:711–21.PubMedCrossRefGoogle Scholar
  69. 69.
    Tei C, Dujardin K, Hodge D, et al. Doppler echocardiographic index for assessment of global right ventricular function. J Am Soc Echocardiogr. 1996;9:838–47.PubMedCrossRefGoogle Scholar
  70. 70.
    Yeo TC, Dujardin KS, Tei C, Mahoney DW, McGoon MD, Seward JB. Value of a Doppler-derived index combining systolic and diastolic time intervals in predicting outcome in primary pulmonary hypertension. Am J Cardiol. 1998;82:1071–6.PubMedCrossRefGoogle Scholar
  71. 71.
    Urheim S, Cauduro S, Frantz R, McGoon M, Belohlavek M, Green T, Miller F, Bailey K, Seward J, Tajik J, Abraham TP. Relation of tissue displacement and strain to invasively determined stroke volume. Am J Cardiol. 2005;96:1173–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Van Wolferen SA, Marcus JT, Boonstra A, Marques KM, Bronzwaer JG, Spreeuwenberg MD, Postmus PE, Vonk-Noordegraaf A. Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J. 2007;28:1250–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Guazzi M, Bandera F, Pelissero G, Castelvecchio S, Menicanti L, Ghio S, Temporelli PL, Arena R. Tricuspid annular plane systolic excursion and pulmonary arterial systolic pressure relationship in heart failure: an index of right ventricular contractile function and prognosis. Am J Physiol Heart Circ Physiol. 2013;305:H1373–81.PubMedCrossRefGoogle Scholar
  74. 74.
    Haddad F, Vrtovec B, Ashley EA, Deschamps A, Haddad H, Denault AY. The concept of ventricular reserve in heart failure and pulmonary hypertension: an old metric that brings us one step closer in our quest for prediction. Curr Opin Cardiol. 2011;26:123–31.PubMedCrossRefGoogle Scholar
  75. 75.
    Grünig E, Tiede H, Enyimayew EO, Ehlken N, Seyfarth HJ, Bossone E, et al. Assessment and prognostic relevance of right ventricular contractile reserve in patients with pulmonary arterial hypertension. Circulation. 2013;128:2005–15.PubMedCrossRefGoogle Scholar
  76. 76.
    Sanz J, García-Alvarez A, Fernández-Friera L, Nair A, Mirelis JG, Sawit ST, Pinney S, Fuster V. Right ventriculo-arterial coupling in pulmonary hypertension: a magnetic resonance study. Heart. 2012;98:238–43.PubMedCrossRefGoogle Scholar
  77. 77.
    Zhang QB, Sun JP, Gao RF, Lee APW, Feng YL, Liu XR, et al. Feasibility of single-beat full volume capture real-time three-dimensional echocardiography for quantification of right ventricular volume: validation by cardiac magnetic resonance imaging. Int J Cardiol. 2013;168:2946–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Trip P, Kind T, van de Veerdonk MC, Marcus JT, de Man FS, Westerhof N, Vonk-Noordegraaf A. Accurate assessment of load-independent right ventricular systolic function in patients with pulmonary hypertension. J Heart Lung Transplant. 2013;32:50–5.PubMedCrossRefGoogle Scholar
  79. 79.
    Kass DA, Beyar R, Lankford E, Heard M, Maughan WL, Sagawa K. Influence of contractile state on the curvilinearity of in situ end-systolic pressure-volume relationships. Circulation. 1989;79:167–78.PubMedCrossRefGoogle Scholar
  80. 80.
    van de Veerdonk MC, Kind T, Marcus JT, Mauritz GJ, Heymans MW, Bogaard HJ, et al. Progressive right ventricular dysfunction in patients with pulmonary arterial hypertension responding to therapy. J Am Coll Cardiol. 2011;58:2511–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Marcus JT, Gan CT, Zwanenburg JJ, Boonstra A, Allaart CP, Götte MJ, Vonk-Noordegraaf A. Interventricular mechanical asynchrony in pulmonary arterial hypertension: left-to-right delay in peak shortening is related to right ventricular overload and left ventricular underfilling. J Am Coll Cardiol. 2008;51:750–7.PubMedCrossRefGoogle Scholar
  82. 82.
    Ryan T, Petrovic O, Dillon JC, Feigenbaum H, Conley MJ, Armstrong WF. An echocardiographic index for separation of right ventricular volume and pressure overload. J Am Coll Cardiol. 1985;5:918–27.PubMedCrossRefGoogle Scholar
  83. 83.
    Bernheim PI. De l’asystolie veineuse dans l’hypertrophie du coeur gauche par stenose concomitante du ventricule droit. Rev Med. 1910;30:785–801.Google Scholar
  84. 84.
    Raymond RJ, Hinderliter AL, Willis PW, Ralph D, Caldwell EJ, Williams W, Ettinger NA, Hill NS, Summer WR, de Boisblanc B, Schwartz T, Koch G, Clayton LM, Jöbsis MM, Crow JW, Long W. Echocardiographic predictors of adverse outcomes in primary pulmonary hypertension. J Am Coll Cardiol. 2002;39:1214–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Huez S, Faoro V, Vachiery JL, Unger P, Martinot JB, Naeije R. Images in cardiovascular medicine. High-altitude-induced right-heart failure. Circulation. 2007;115:e308–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Leitman M, Lysyansky P, Sidenko S, Shir V, Peleg E, Binenbaum M, Kaluski E, Krakover R, Vered Z. Two-dimensional strain-a novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am Soc Echocardiogr. 2004;17:1021–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Reisner SA, Lysyansky P, Agmon Y, Mutlak D, Lessick J, Friedman Z. Global longitudinal strain: a novel index of left ventricular systolic function. J Am Soc Echocardiogr. 2004;17:630–3.PubMedCrossRefGoogle Scholar
  88. 88.
    Lamia B, Tanabe M, Kim HK, Johnson L, Gorcsan 3rd J, Pinsky MR. Quantifying the role of regional dyssynchrony on global left ventricular performance. JACC Cardiovasc Imaging. 2009;2:1350–6.PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Tanabe M, Lamia B, Tanaka H, Schwartzman D, Pinsky MR, Gorcsan 3rd J. Echocardiographic speckle tracking radial strain imaging to assess ventricular dyssynchrony in a pacing model of resynchronization therapy. J Am Soc Echocardiogr. 2008;21:1382–8.PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Lamia B, Molano LC, Viacroze C, Cuvelier A, Muir JF. Speckle tracking longitudinal strain imaging to assess right ventricular dyssynchrony in pulmonary hypertension patients. In: 2013 European Respiratory Society meeting, Barcelona. 2013; p 5155.Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Department of CardiologyErasme University HospitalBrusselsBelgium
  2. 2.Department of Pulmonary and Critical CareRouen University HospitalRouenFrance

Personalised recommendations