Skip to main content

Future Therapies for Progressive Multiple Sclerosis

  • Chapter
  • First Online:
Progressive Multiple Sclerosis

Abstract

The vast majority of interested clinicians or scientists, patients with multiple sclerosis, and carers would, surely, offer the absence of any useful disease-modifying treatments for progressive multiple sclerosis as one of the most important remaining challenges in relation to multiple sclerosis. As the foregoing has emphasized, symptomatic approaches and therapies for progressive MS have made an enormous aspect on many of the major problems commonly associated with longstanding disease, perhaps particularly incontinence, pain, spasticity, and mood disturbance. Also and arguably even more dramatically, there has been a sea change in our ability to prevent relapses in MS over the past three decades – from no useful treatments at all, to half a dozen licensed (or likely soon-to-be-licensed) relapse-reducing agents, including monoclonal antibodies capable of preventing up to 80% relapses. Many were surprised if not shocked that the therapeutic ability to stop relapses does not bring with it a comparable impact on disease progression, but one major effect of the numerous, large-scale, and high-quality trials of relapse-preventing immunotherapies for MS has been to inform our understanding of this disease, and to illustrate that the link between relapses and disability progression is not direct, and that successfully treating the first may have no effect on the second.

The last decade has consequently seen a very serious reorientation of therapeutic research in MS, with the realization that the problems of progressive disability and its treatment, in both secondary and primary progressive disease, need to be addressed separately and distinctly from the problem of relapses. The question now is whether the next 30 years may see the same level of success in developing disease-modifying treatments for progressive MS as the last three decades have seen in therapies for relapsing–remitting disease. Some might argue that the omens are not good, and the problems rather greater – in the 1980s, there were a large number of prescribable drugs available that were at least capable of significantly suppressing or altering immune function, while at present, there are no drugs that can modify neuronal or axonal loss in any progressive neurodegenerative disorder. However, the pace and scale of therapeutic research in recent years, the extraordinary advances in stem cell science, and the remarkable changes in molecular medicine – but above all the single fact that at least we have identified and are attempting to address the right question, that of halting (or, better, reversing) progressive neurodegeneration in MS rather than focussing exclusively on inflammatory relapses; all this must surely give grounds for reasonable and realistic optimism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scalfari A, et al. The natural history of multiple sclerosis: a geographically based study 10: relapses and long-term disability. Brain. 2010;133:1914–29.

    PubMed  Google Scholar 

  2. Confavreux C, Vukusic S, Moreau T, Adeleine P. Relapses and progression of disability in multiple sclerosis. N Engl J Med. 2000;343:1430–8.

    PubMed  CAS  Google Scholar 

  3. Coles AJ, et al. Monoclonal antibody treatment exposes three mechanisms underlying the clinical course of multiple sclerosis. Ann Neurol. 1999;46:296–304.

    PubMed  CAS  Google Scholar 

  4. Campbell GR, et al. Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Ann Neurol. 2011;69:481–92.

    PubMed  CAS  Google Scholar 

  5. Lassmann H. Mechanisms of neurodegeneration shared between multiple sclerosis and Alzheimer’s disease. J Neural Transm. 2011;118:747–52.

    PubMed  CAS  Google Scholar 

  6. Witherick J, Wilkins A, Scolding N, Kemp K. Mechanisms of oxidative damage in multiple sclerosis and a cell therapy approach to treatment. Autoimmune Dis. 2010;2011:164608.

    PubMed  Google Scholar 

  7. Rojas JI, Romano M, Ciapponi A, Patrucco L, Cristiano E. Interferon beta for primary progressive multiple sclerosis. Cochrane Database Syst Rev. 2010:CD006643.

    Google Scholar 

  8. Hawker K, et al. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann Neurol. 2009;66:460–71.

    PubMed  CAS  Google Scholar 

  9. Wolinsky JS, et al. Glatiramer acetate in primary progressive multiple sclerosis: results of a multinational, multicenter, double-blind, placebo-controlled trial. Ann Neurol. 2007;61:14–24.

    PubMed  CAS  Google Scholar 

  10. Scolding N, Franklin R. Axon loss in multiple sclerosis. Lancet. 1998;352:340–1.

    PubMed  CAS  Google Scholar 

  11. Rodriguez M. A function of myelin is to protect axons from subsequent injury: implications for deficits in multiple sclerosis. Brain. 2003;126:751–2.

    PubMed  Google Scholar 

  12. Bitsch A, Schuchardt J, Bunkowski S, Kuhlmann T, Bruck W. Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain. 2000;123:1174–83.

    PubMed  Google Scholar 

  13. Kornek B, et al. Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol. 2000;157:267–76.

    PubMed  CAS  Google Scholar 

  14. Lipton SA. Blockade of electrical-activity promotes the death of mammalian retinal ganglion-cells in culture. Proc Natl Acad Sci USA. 1986;83:9774–8.

    PubMed  CAS  Google Scholar 

  15. Raine CS, Cross AH. Axonal dystrophy as a consequence of long-term demyelination. Lab Invest. 1989;60:714–25.

    PubMed  CAS  Google Scholar 

  16. Griffiths I, et al. Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science. 1998;280:1610–3.

    PubMed  CAS  Google Scholar 

  17. MeyerFranke A, Kaplan MR, Pfrieger FW, Barres BA. Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron. 1995;15:805–19.

    CAS  Google Scholar 

  18. Wilkins A, Majed H, Layfield R, Compston A, Chandran S. Oligodendrocytes promote neuronal survival and axonal length by distinct intracellular mechanisms: a novel role for oligodendrocyte-derived glial cell line-derived neurotrophic factor. J Neurosci. 2003;23:4967–74.

    PubMed  CAS  Google Scholar 

  19. Lappe-Siefke C, et al. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet. 2003;33:366–74.

    PubMed  CAS  Google Scholar 

  20. Edgar JM, et al. Oligodendroglial modulation of fast axonal transport in a mouse model of hereditary spastic paraplegia. J Cell Biol. 2004;166:121–31.

    PubMed  CAS  Google Scholar 

  21. Irvine KA, Blakemore WF. Remyelination protects axons from demyelination-associated axon degeneration. Brain. 2008;131:1464–77.

    PubMed  CAS  Google Scholar 

  22. Gill SS, et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med. 2003;9:589–95.

    PubMed  CAS  Google Scholar 

  23. Love S, et al. Glial cell line-derived neurotrophic factor induces neuronal sprouting in human brain. Nat Med. 2005;11:703–4.

    PubMed  CAS  Google Scholar 

  24. Lang AE, et al. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol. 2006;59:459–66.

    PubMed  CAS  Google Scholar 

  25. Hutchinson M, Gurney S, Newson R. GDNF in Parkinson disease: an object lesson in the tyranny of type II. J Neurosci Methods. 2007;163:190–2.

    PubMed  CAS  Google Scholar 

  26. Patel NK, Gill SS. GDNF delivery for Parkinson’s disease. Acta Neurochir Suppl. 2007;97:135–54.

    PubMed  CAS  Google Scholar 

  27. Du Y, Dreyfus CF. Oligodendrocytes as providers of growth factors. J Neurosci Res. 2002;68:647–54.

    PubMed  CAS  Google Scholar 

  28. Wilkins A, Chandran S, Compston A. A role for oligodendrocyte-derived IGF-1 in trophic support of cortical neurons. Glia. 2001;36:48–57.

    PubMed  CAS  Google Scholar 

  29. Wilkins A, Scolding N. Protecting axons in multiple sclerosis. Mult Scler. 2008;14:1013–25.

    PubMed  CAS  Google Scholar 

  30. Frank JA, et al. A pilot study of recombinant insulin-like growth factor-1 in seven multiple sderosis patients. Mult Scler. 2002;8:24–9.

    PubMed  CAS  Google Scholar 

  31. Skaper SD. Peptide mimetics of neurotrophins and their receptors. Curr Pharm Des. 2011;17(25):2704–18.

    PubMed  CAS  Google Scholar 

  32. Dawbarn D, Allen SJ. Neurotrophins and neurodegeneration. Neuropathol Appl Neurobiol. 2003;29:211–30.

    PubMed  CAS  Google Scholar 

  33. Gilgun-Sherki Y, Panet H, Melamed E, Offen D. Riluzole suppresses experimental autoimmune encephalomyelitis: implications for the treatment of multiple sclerosis. Brain Res. 2003;989:196–204.

    PubMed  CAS  Google Scholar 

  34. Gonsette RE. Oxidative stress and excitotoxicity: a therapeutic issue in multiple sclerosis? Mult Scler. 2008;14:22–34.

    PubMed  CAS  Google Scholar 

  35. Loria F, et al. An endocannabinoid tone limits excitotoxicity in vitro and in a model of multiple sclerosis. Neurobiol Dis. 2010;37:166–76.

    PubMed  CAS  Google Scholar 

  36. Jackson SJ, Baker D, Cuzner ML, Diemel LT. Cannabinoid-mediated neuroprotection following interferon-gamma treatment in a three-dimensional mouse brain aggregate cell culture. Eur J Neurosci. 2004;20:2267–75.

    PubMed  Google Scholar 

  37. Jackson SJ, Diemel LT, Pryce G, Baker D. Cannabinoids and neuroprotection in CNS inflammatory disease. J Neurol Sci. 2005;233:21–5.

    PubMed  CAS  Google Scholar 

  38. Pryce G, et al. Cannabinoids inhibit neurodegeneration in models of multiple sclerosis. Brain. 2003;126:2191–202.

    PubMed  Google Scholar 

  39. Zajicek J, et al. Cannabinoids for treatment of spasticity and other symptoms related to multiple sclerosis (CAMS study): multicentre randomised placebo-controlled trial. Lancet. 2003;362:1517–26.

    PubMed  CAS  Google Scholar 

  40. Waxman SG. Mechanisms of disease: sodium channels and neuroprotection in multiple sclerosis-current status. Nat Clin Pract Neurol. 2008;4:159–69.

    PubMed  CAS  Google Scholar 

  41. Bechtold DA, Kapoor R, Smith KJ. Axonal protection using flecainide in experimental autoimmune encephalomyelitis. Ann Neurol. 2004;55:607–16.

    PubMed  CAS  Google Scholar 

  42. Black JA, Liu S, Hains BC, Saab CY, Waxman SG. Long-term protection of central axons with phenytoin in monophasic and chronic-relapsing EAE. Brain. 2006;129:3196–208.

    PubMed  Google Scholar 

  43. Kapoor R, Davies M, Blaker PA, Hall SM, Smith KJ. Blockers of sodium and calcium entry protect axons from nitric oxide-mediated degeneration. Ann Neurol. 2003;53:174–80.

    PubMed  CAS  Google Scholar 

  44. Kapoor R, et al. Lamotrigine for neuroprotection in secondary progressive multiple sclerosis: a randomised, double-blind, placebo-controlled, parallel-group trial. Lancet Neurol. 2010;9:681–8.

    PubMed  CAS  Google Scholar 

  45. Plane JM, Shen Y, Pleasure DE, Deng W. Prospects for minocycline neuroprotection. Arch Neurol. 2010;67:1442–8.

    PubMed  Google Scholar 

  46. Yong W, et al. The promise of minocycline in neurology. Lancet Neurol. 2004;3:744–51.

    PubMed  Google Scholar 

  47. Wilkins A, Nikodemova M, Compston A, Duncan I. Minocycline attenuates nitric oxide-mediated neuronal and axonal destruction in vitro. Neuron Glia Biol. 2004;1:297–305.

    PubMed  Google Scholar 

  48. Metz LM, et al. Minocycline reduces gadolinium-enhancing magnetic resonance imaging lesions in multiple sclerosis. Ann Neurol. 2004;55:756.

    PubMed  Google Scholar 

  49. Metz LM, et al. Glatiramer acetate in combination with minocycline in patients with relapsing – remitting multiple sclerosis: results of a Canadian, multicenter, double-blind, placebo-controlled trial. Mult Scler. 2009;15:1183–94.

    PubMed  CAS  Google Scholar 

  50. McPherson RJ, Juul SE. Recent trends in erythropoietin-mediated neuroprotection. Int J Dev Neurosci. 2008;26:103–11.

    PubMed  CAS  Google Scholar 

  51. Sattler MB, et al. Neuroprotective effects and intracellular signaling pathways of erythropoietin in a rat model of multiple sclerosis. Cell Death Differ. 2004;11 Suppl 2:S181–92; S181–92.

    PubMed  Google Scholar 

  52. Diem R, et al. Combined therapy with methylprednisolone and erythropoietin in a model of multiple sclerosis. Brain. 2005;128:375–85.

    PubMed  Google Scholar 

  53. Ehrenreich H, et al. Exploring recombinant human erythropoietin in chronic progressive multiple sclerosis. Brain. 2007;130(Pt 10):2577–88.

    PubMed  Google Scholar 

  54. Frank T, et al. Both systemic and local application of granulocyte-colony stimulating factor (G-CSF) is neuroprotective after retinal ganglion cell axotomy. BMC Neurosci. 2009;10:49.

    PubMed  Google Scholar 

  55. Xiao BG, Lu CZ, Link H. Cell biology and clinical promise of G-CSF: immunomodulation and neuroprotection. J Cell Mol Med. 2007;11:1272–90.

    PubMed  CAS  Google Scholar 

  56. Steffens S, Mach F. Anti-inflammatory properties of statins. Semin Vasc Med. 2004;4:417–22.

    PubMed  Google Scholar 

  57. Stuve O, et al. Statins and their potential targets in multiple sclerosis therapy. Expert Opin Ther Targets. 2003;7:613–22.

    PubMed  Google Scholar 

  58. Neuhaus O, Stuve O, Zamvil SS, Hartung HP. Are statins a treatment option for multiple sclerosis? Lancet Neurol. 2004;3:369–71.

    PubMed  CAS  Google Scholar 

  59. Togha M, et al. Simvastatin treatment in patients with relapsing-remitting multiple sclerosis receiving interferon beta 1a: a double-blind randomized controlled trial. Mult Scler. 2010;16:848–54.

    PubMed  CAS  Google Scholar 

  60. Sorensen PS, et al. Simvastatin as add-on therapy to interferon beta-1a for relapsing-remitting multiple sclerosis (SIMCOMBIN study): a placebo-controlled randomised phase 4 trial. Lancet Neurol. 2011;10(8):691–701.

    PubMed  CAS  Google Scholar 

  61. Lanzillo R, et al. Atorvastatin combined to interferon to verify the efficacy (ACTIVE) in relapsing-remitting active multiple sclerosis patients: a longitudinal controlled trial of combination therapy. Mult Scler. 2010;16:450–4.

    PubMed  CAS  Google Scholar 

  62. Paul F, et al. Oral high-dose atorvastatin treatment in relapsing-remitting multiple sclerosis. PLoS One. 2008;3:e1928.

    PubMed  Google Scholar 

  63. Wang J, Xiao Y, Luo M, Zhang X, Luo H. Statins for multiple sclerosis. Cochrane Database Syst Rev. 2010:CD008386.

    Google Scholar 

  64. Lock C. Are “statins” beneficial or harmful in multiple sclerosis? Neurology. 2008;71:e54–5.

    PubMed  Google Scholar 

  65. Goldman MD, Cohen JA. Statins to treat multiple sclerosis: friend or foe? Neurology. 2008;71:1386–7.

    PubMed  Google Scholar 

  66. Birnbaum G, Cree B, Altafullah I, Zinser M, Reder AT. Combining beta interferon and atorvastatin may increase disease activity in multiple sclerosis. Neurology. 2008;71:1390–5.

    PubMed  CAS  Google Scholar 

  67. Bunge MB, Bunge RP, Ris H. Ultrastructural study of remyelination in an experimental lesion in the adult cat spinal cord. J Biophys Biochem Cytol. 1961;10:67–94.

    PubMed  CAS  Google Scholar 

  68. Perier O, Gregoire A. Electron microscopic features of multiple sclerosis lesions. Brain. 1965;88:937–52.

    PubMed  CAS  Google Scholar 

  69. Blakemore WF. Remyelination of CNS axons by Schwann cells transplanted from the sciatic nerve. Nature. 1977;266:68–9.

    PubMed  CAS  Google Scholar 

  70. Scolding NJ. Strategies for repair and remyelination in demyelinating diseases. Curr Opin Neurol. 1997;10:193–200.

    PubMed  CAS  Google Scholar 

  71. Bjartmar C, Trapp BD. Axonal and neuronal degeneration in multiple sclerosis: mechanisms and functional consequences. Curr Opin Neurol. 2001;14:271–8.

    PubMed  CAS  Google Scholar 

  72. Smith KJ, McDonald WI. The pathophysiology of multiple sclerosis: the mechanisms underlying the production of symptoms and the natural history of the disease. Philos Trans R Soc Lond B Biol Sci. 1999;354:1649–73.

    PubMed  CAS  Google Scholar 

  73. Hirst C, et al. Contribution of relapses to disability in multiple sclerosis. J Neurol. 2008;255:280–7.

    PubMed  Google Scholar 

  74. Lublin FD, Baier M, Cutter G. Effect of relapses on development of residual deficit in multiple sclerosis. Neurology. 2003;61:1528–32.

    PubMed  Google Scholar 

  75. Garbern JY, et al. Patients lacking the major CNS myelin protein, proteolipid protein 1, develop length-dependent axonal degeneration in the absence of demyelination and inflammation. Brain. 2002;125:551–61.

    PubMed  Google Scholar 

  76. Itoyama Y, Webster HD, Richardson-EP J, Trapp BD. Schwann cell remyelination of demyelinated axons in spinal cord multiple sclerosis lesions. Ann Neurol. 1983;14:339–46.

    PubMed  CAS  Google Scholar 

  77. Ludwin SK. Remyelination in the central nervous system and the peripheral nervous system. Adv Neurol. 1988;47:215–54.

    PubMed  CAS  Google Scholar 

  78. Ogata J, Feigin I. Schwann cells and regenerated peripheral myelin in multiple sclerosis: an ultrastructural study. Neurology. 1975;25:713–6.

    PubMed  CAS  Google Scholar 

  79. Zawadzka M, et al. CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell. 2010;6:578–90.

    PubMed  CAS  Google Scholar 

  80. Morrissey TK, Kleitman N, Bunge RP. Human Schwann cells in vitro. II. Myelination of sensory axons following extensive purification and heregulin-induced expansion. J Neurobiol. 1995;28:190–201.

    PubMed  CAS  Google Scholar 

  81. Rutkowski JL, Kirk CJ, Lerner MA, Tennekoon GI. Purification and expansion of human Schwann cells in vitro. Nat Med. 1995;1:80–3.

    PubMed  CAS  Google Scholar 

  82. Baron-Van Evercooren A, Blakemore W. Remyelination through engraftment. In: Lazzarini RA, editor. Myelin biology and disorders. New York: Elsevier; 2004. p. 143–72.

    Google Scholar 

  83. Lubetzki C, Williams A, Stankoff B. Promoting repair in multiple sclerosis: problems and prospects. Curr Opin Neurol. 2005;18:237–44.

    PubMed  CAS  Google Scholar 

  84. Kocsis JD, Waxman SG. Schwann cells and their precursors for repair of central nervous system myelin. Brain. 2007;130:1978–80.

    PubMed  Google Scholar 

  85. Woodhoo A, et al. Schwann cell precursors: a favourable cell for myelin repair in the central nervous system. Brain. 2007;130:2175–85.

    PubMed  CAS  Google Scholar 

  86. Levi ADO, Bunge RP. Studies of myelin formation after transplantation of human Schwann cells into the severe combined immunodeficient mouse. Exp Neurol. 1994;130:41–52.

    PubMed  CAS  Google Scholar 

  87. Brierley CM, et al. Remyelination of demyelinated CNS axons by transplanted human schwann cells: the deleterious effect of contaminating fibroblasts. Cell Transplant. 2001;10:305–15.

    PubMed  CAS  Google Scholar 

  88. Kohama I, et al. Transplantation of cryopreserved adult human Schwann cells enhances axonal conduction in demyelinated spinal cord. J Neurosci. 2001;21:944–50.

    PubMed  CAS  Google Scholar 

  89. Bachelin C, et al. Efficient myelin repair in the macaque spinal cord by autologous grafts of Schwann cells. Brain. 2005;128:540–9.

    PubMed  Google Scholar 

  90. Langford LA, Porter S, Bunge RP. Immortalized rat Schwann cells produce tumours in vivo. J Neurocytol. 1988;17:521–9.

    PubMed  CAS  Google Scholar 

  91. Franklin RJM, Blakemore WF. Requirements for Schwann cell migration within CNS environments: a viewpoint. Int J Dev Neurosci. 1993;11:641–9.

    PubMed  CAS  Google Scholar 

  92. Harrison B. Schwann cell and oligodendrocyte remyelination in lysolecithin-induced lesions in irradiated rat spinal cord. J Neurol Sci. 1985;67:143–59.

    PubMed  CAS  Google Scholar 

  93. Woodruff RH, Franklin RJ. Demyelination and remyelination of the caudal cerebellar peduncle of adult rats following stereotaxic injections of lysolecithin, ethidium bromide, and complement/anti-galactocerebroside: a comparative study. Glia. 1999;25:216–28.

    PubMed  CAS  Google Scholar 

  94. Lavdas A, Franceschini I, Dubois-Dalcq M, Matsas R. Schwann cells genetically engineered to express PSA show enhanced migratory potential without impairment of their myelinating ability in vitro. Glia. 2006;53(8):868–78.

    PubMed  Google Scholar 

  95. Jose AM. Multiple, sclerosis: can Schwann cells wrap it up? Yale J Biol Med. 2002;75:113–6.

    PubMed  Google Scholar 

  96. Franklin RJ, Barnett SC. Olfactory ensheathing cells. In: Lazzarini RA, editor. Myelin biology and disorders. New York: Elsevier; 2004. p. 371–84.

    Google Scholar 

  97. Lakatos A, Franklin RJ, Barnett SC. Olfactory ensheathing cells and Schwann cells differ in their in vitro interactions with astrocytes. Glia. 2000;32:214–25.

    PubMed  CAS  Google Scholar 

  98. Lakatos A, Barnett SC, Franklin RJ. Olfactory ensheathing cells induce less host astrocyte response and chondroitin sulphate proteoglycan expression than Schwann cells following transplantation into adult CNS white matter. Exp Neurol. 2003;184:237–46.

    PubMed  CAS  Google Scholar 

  99. Boyd JG, Doucette R, Kawaja MD. Defining the role of olfactory ensheathing cells in facilitating axon remyelination following damage to the spinal cord. FASEB J. 2005;19:694–703.

    PubMed  CAS  Google Scholar 

  100. Sasaki M, Lankford KL, Radtke C, Honmou O, Kocsis JD. Remyelination after olfactory ensheathing cell transplantation into diverse demyelinating environments. Exp Neurol. 2011;229:88–98.

    PubMed  Google Scholar 

  101. Kocsis JD, Lankford KL, Sasaki M, Radtke C. Unique in vivo properties of olfactory ensheathing cells that may contribute to neural repair and protection following spinal cord injury. Neurosci Lett. 2009;456:137–42.

    PubMed  CAS  Google Scholar 

  102. Bonilla S, et al. Haematopoietic progenitor cells from adult bone marrow differentiate into cells that express oligodendroglial antigens in the neonatal mouse brain. Eur J Neurosci. 2002;15:575–82.

    PubMed  Google Scholar 

  103. Bonilla S, et al. Functional neural stem cells derived from adult bone marrow. Neuroscience. 2005;133:85–95.

    PubMed  CAS  Google Scholar 

  104. Koshizuka S, et al. Transplanted hematopoietic stem cells from bone marrow differentiate into neural lineage cells and promote functional recovery after spinal cord injury in mice. J Neuropathol Exp Neurol. 2004;63:64–72.

    PubMed  Google Scholar 

  105. Suzuki H, et al. Neurospheres induced from bone marrow stromal cells are multipotent for differentiation into neuron, astrocyte, and oligodendrocyte phenotypes. Biochem Biophys Res Commun. 2004;322:918–22.

    PubMed  CAS  Google Scholar 

  106. Terada N, et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature. 2002;416:542–5.

    PubMed  CAS  Google Scholar 

  107. Gordon D, Glover CP, Merrison AM, Uney JB, Scolding NJ. Enhanced green fluorescent protein-expressing human mesenchymal stem cells retain neural marker expression. J Neuroimmunol. 2008;193:59–67.

    PubMed  CAS  Google Scholar 

  108. Morikawa S, et al. Development of mesenchymal stem cells partially originate from the neural crest. Biochem Biophys Res Commun. 2009;379:1114–9.

    PubMed  CAS  Google Scholar 

  109. Nagoshi N, et al. Ontogeny and multipotency of neural crest-derived stem cells in mouse bone marrow, dorsal root ganglia, and whisker pad. Cell Stem Cell. 2008;2:392–403.

    PubMed  CAS  Google Scholar 

  110. Warrington AE, Barbarese E, Pfeiffer SE. Differential myelinogenic capacity of specific developmental stages of the oligodendrocyte lineage upon transplantation into hypomyelinating hosts. J Neurosci Res. 1993;34:1–13.

    PubMed  CAS  Google Scholar 

  111. Groves AK, et al. Repair of demyelinated lesions by transplantation of purified O- 2A progenitor cells. Nature. 1993;362:453–5.

    PubMed  CAS  Google Scholar 

  112. Windrem MS, et al. Fetal and adult human oligodendrocyte progenitor cell isolates myelinate the congenitally dysmyelinated brain. Nat Med. 2004;10:93–7.

    PubMed  CAS  Google Scholar 

  113. Brustle O, et al. Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science. 1999;285:754–6.

    PubMed  CAS  Google Scholar 

  114. Glaser T, Perez-Bouza A, Klein K, Brustle O. Generation of purified oligodendrocyte progenitors from embryonic stem cells. FASEB J. 2005;19:112–4.

    PubMed  CAS  Google Scholar 

  115. Chandran S, et al. Differential generation of oligodendrocytes from human and rodent embryonic spinal cord neural precursors. Glia. 2004;47:314–24.

    PubMed  Google Scholar 

  116. Keirstead HS, et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci. 2005;25:4694–705.

    PubMed  CAS  Google Scholar 

  117. Nistor GI, Totoiu MO, Haque N, Carpenter MK, Keirstead HS. Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia. 2005;49:385–96.

    PubMed  Google Scholar 

  118. Vogel G. Cell biology. Ready or not? Human ES cells head toward the clinic. Science. 2005;308:1534–8.

    PubMed  CAS  Google Scholar 

  119. Nunes MC, et al. Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat Med. 2003;9:439–47.

    PubMed  CAS  Google Scholar 

  120. Pluchino S, et al. Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature. 2003;422:688–94.

    PubMed  CAS  Google Scholar 

  121. Pluchino S, et al. Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature. 2005;436:266–71.

    PubMed  CAS  Google Scholar 

  122. Braude P, Minger SL, Warwick RM. Stem cell therapy: hope or hype? BMJ. 2005;330:1159–60.

    PubMed  Google Scholar 

  123. Scolding N. Stem-cell therapy: hope and hype. Lancet. 2005;365:2073–5.

    PubMed  Google Scholar 

  124. Erdo F, et al. Host-dependent tumorigenesis of embryonic stem cell transplantation in experimental stroke. J Cereb Blood Flow Metab. 2003;23:780–5.

    PubMed  Google Scholar 

  125. Roy NS, et al. Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med. 2006;12:1259–68.

    PubMed  CAS  Google Scholar 

  126. Amariglio N, et al. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med. 2009;6:e29.

    Google Scholar 

  127. Jandial R, Snyder EY. A safer stem cell: on guard against cancer. Nat Med. 2009;15:999–1001.

    PubMed  CAS  Google Scholar 

  128. Amariglio N, Rechavi G. On the origin of glioneural neoplasms after neural cell transplantation. Nat Med. 2010;16:157–8.

    PubMed  CAS  Google Scholar 

  129. Keene CD, et al. A patient with Huntington’s disease and long-surviving fetal neural transplants that developed mass lesions. Acta Neuropathol. 2009;117:329–38.

    PubMed  Google Scholar 

  130. Bretzner F, Gilbert F, Baylis F, Brownstone RM. Target populations for first-in-human embryonic stem cell research in spinal cord injury. Cell Stem Cell. 2011;8:468–75.

    PubMed  CAS  Google Scholar 

  131. Wirth III E, Lebkowski JS, Lebacqz K. Response to Frederic Bretzner et al. “Target populations for first-in-human embryonic stem cell research in spinal cord injury”. Cell Stem Cell. 2011;8:476–8.

    PubMed  CAS  Google Scholar 

  132. Solbakk JH, Zoloth L. The tragedy of translation: the case of “first use” in human embryonic stem cell research. Cell Stem Cell. 2011;8:479–81.

    PubMed  CAS  Google Scholar 

  133. Paty DW, Arnold DL. The lesions of multiple sclerosis. N Engl J Med. 2002;346:199–200.

    PubMed  Google Scholar 

  134. Scolding N. Adult stem cells and multiple sclerosis. Cell Prolif. 2011;44 Suppl 1:35–8.

    PubMed  Google Scholar 

  135. Comi G. Is it clinically relevant to repair focal multiple sclerosis lesions? J Neurol Sci. 2008;265:17–20.

    PubMed  CAS  Google Scholar 

  136. Scolding N, et al. Oligodendrocyte progenitors are present in the normal adult human CNS and in the lesions of multiple sclerosis. Brain. 1998;121:2221–8.

    PubMed  Google Scholar 

  137. Wolswijk G. Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J Neurosci. 1998;18:601–9.

    PubMed  CAS  Google Scholar 

  138. Chang A, Nishiyama A, Peterson J, Prineas J, Trapp BD. NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. J Neurosci. 2000;20: 6404–12.

    PubMed  CAS  Google Scholar 

  139. Maeda Y, et al. Platelet-derived growth factor-alpha receptor-positive oligodendroglia are frequent in multiple sclerosis lesions. Ann Neurol. 2001;49:776–85.

    PubMed  CAS  Google Scholar 

  140. Chang A, Tourtellotte WW, Rudick R, Trapp BD. Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med. 2002;346:165–73.

    PubMed  Google Scholar 

  141. Wilson HC, Scolding NJ, Raine CS. Co-expression of PDGF alpha receptor and NG2 by oligodendrocyte precursors in human CNS and multiple sclerosis lesions. J Neuroimmunol. 2006;176:162–73.

    PubMed  CAS  Google Scholar 

  142. Snethen H, Love S, Scolding N. Disease-responsive neural precursor cells are present in multiple sclerosis lesions. Regen Med. 2008;3:835–47.

    PubMed  CAS  Google Scholar 

  143. Albert M, Antel J, Bruck W, Stadelmann C. Extensive cortical remyelination in patients with chronic multiple sclerosis. Brain Pathol. 2007;17:129–38.

    PubMed  Google Scholar 

  144. Patani R, Balaratnam M, Vora A, Reynolds R. Remyelination can be extensive in multiple sclerosis despite a long disease course. Neuropathol Appl Neurobiol. 2007;33:277–87.

    PubMed  CAS  Google Scholar 

  145. Evangelou N, DeLuca GC, Owens T, Esiri MM. Pathological study of spinal cord atrophy in multiple sclerosis suggests limited role of local lesions. Brain. 2005;128:29–34.

    PubMed  CAS  Google Scholar 

  146. Chard D, Miller D. Is multiple sclerosis a generalized disease of the central nervous system? An MRI perspective. Curr Opin Neurol. 2009;22:214–8.

    PubMed  Google Scholar 

  147. Filippi M, Rocca MA. MRI evidence for multiple sclerosis as a diffuse disease of the central nervous system. J Neurol. 2005;252 Suppl 5:v16–24.

    PubMed  Google Scholar 

  148. Kutzelnigg A, et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain. 2005;128:2705–12.

    PubMed  Google Scholar 

  149. Korbling M, Estrov Z. Adult stem cells for tissue repair. N Engl J Med. 2003;349:570–82.

    PubMed  Google Scholar 

  150. Phinney DG. Biochemical, heterogeneity of mesenchymal stem cell populations: clues to their therapeutic efficacy. Cell Cycle. 2007;6:2884–9.

    PubMed  CAS  Google Scholar 

  151. Rice CM, Scolding NJ. Adult stem cells – reprogramming neurological repair? Lancet. 2004;364:193–9.

    PubMed  CAS  Google Scholar 

  152. Zhang J, et al. Human bone marrow stromal cell treatment improves neurological functional recovery in EAE mice. Exp Neurol. 2005;195:16–26.

    PubMed  CAS  Google Scholar 

  153. Gerdoni E, et al. Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Ann Neurol. 2007;61:219–27.

    PubMed  CAS  Google Scholar 

  154. Zappia E, et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood. 2005;106:1755–61.

    PubMed  CAS  Google Scholar 

  155. Gordon D, et al. Human mesenchymal stem cells abrogate experimental allergic encephalomyelitis after intraperitoneal injection and with sparse CNS infiltration. Neurosci Lett. 2008;448:71–3.

    PubMed  CAS  Google Scholar 

  156. Akiyama Y, Radtke C, Honmou O, Kocsis JD. Remyelination of the spinal cord following intravenous delivery of bone marrow cells. Glia. 2002;39:229–36.

    PubMed  Google Scholar 

  157. Akiyama Y, Radtke C, Kocsis JD. Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells. J Neurosci. 2002;22:6623–30.

    PubMed  CAS  Google Scholar 

  158. Hermann A, et al. Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. J Cell Sci. 2004;117:4411–22.

    PubMed  CAS  Google Scholar 

  159. Fu L, et al. Derivation of neural stem cells from mesenchymal stemcells: evidence for a bipotential stem cell population. Stem Cells Dev. 2008;17:1109–21.

    PubMed  CAS  Google Scholar 

  160. Freedman MS, et al. The therapeutic potential of mesenchymal stem cell transplantation as a treatment for multiple sclerosis: consensus report of the International MSCT Study Group. Mult Scler. 2010;16:503–10.

    PubMed  Google Scholar 

  161. Martino G, Franklin RJ, Van Evercooren AB, Kerr DA. Stem cell transplantation in multiple sclerosis: current status and future prospects. Nat Rev Neurol. 2010;6:247–55.

    PubMed  Google Scholar 

  162. Munoz JR, Stoutenger BR, Robinson AP, Spees JL, Prockop DJ. Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc Natl Acad Sci USA. 2005;102:18171–6.

    PubMed  CAS  Google Scholar 

  163. Bai L, Caplan A, Lennon D, Miller RH. Human mesenchymal stem cells signals regulate neural stem cell fate. Neurochem Res. 2007;32:353–62.

    PubMed  CAS  Google Scholar 

  164. Rivera FJ, et al. Mesenchymal stem cells instruct oligodendrogenic fate decision on adult neural stem cells. Stem Cells. 2006;24:2209–19.

    PubMed  CAS  Google Scholar 

  165. Bai L, et al. Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia. 2009;57:1192–203.

    PubMed  Google Scholar 

  166. Li Y, et al. Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells. Glia. 2005;49:407–17.

    PubMed  Google Scholar 

  167. Gao Q, et al. Bone marrow stromal cells reduce ischemia-induced astrocytic activation in vitro. Neuroscience. 2008;152:646–55.

    PubMed  CAS  Google Scholar 

  168. Chen Q, et al. Protective effects of bone marrow stromal cell transplantation in injured rodent brain: synthesis of neurotrophic factors. J Neurosci Res. 2005;80:611–9.

    PubMed  CAS  Google Scholar 

  169. Garcia R, Aguiar J, Alberti E, de la Cuetara K, Pavon N. Bone marrow stromal cells produce nerve growth factor and glial cell line-derived neurotrophic factors. Biochem Biophys Res Commun. 2004;316:753–4.

    PubMed  CAS  Google Scholar 

  170. Li Y, et al. Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology. 2002;59:514–23.

    PubMed  CAS  Google Scholar 

  171. Ye M, et al. Glial cell line-derived neurotrophic factor in bone marrow stromal cells of rat. Neuroreport. 2005;16:581–4.

    PubMed  CAS  Google Scholar 

  172. Wilkins A, et al. Human bone marrow-derived mesenchymal stem cells secrete brain-derived neurotrophic factor which promotes neuronal survival in vitro. Stem Cell Res. 2009;3:67–70.

    Google Scholar 

  173. Kemp K, et al. Mesenchymal stem cell-secreted superoxide dismutase promotes cerebellar neuronal survival. J Neurochem. 2009;114:1569–80.

    Google Scholar 

  174. Kemp K, Gray E, Mallam E, Scolding N, Wilkins A. Inflammatory cytokine induced regulation of superoxide dismutase 3 expression by human mesenchymal stem cells. Stem Cell Rev. 2010;6:548–59.

    PubMed  CAS  Google Scholar 

  175. Johansson CB, et al. Extensive fusion of haematopoietic cells with Purkinje neurons in response to chronic inflammation. Nat Cell Biol. 2008;10:575–83.

    PubMed  CAS  Google Scholar 

  176. Nygren JM, et al. Myeloid and lymphoid contribution to non-haematopoietic lineages through irradiation-induced heterotypic cell fusion. Nat Cell Biol. 2008;10:584–92.

    PubMed  CAS  Google Scholar 

  177. Fox JM, Chamberlain G, Ashton BA, Middleton J. Recent advances into the understanding of mesenchymal stem cell trafficking. Br J Haematol. 2007;137:491–502.

    PubMed  CAS  Google Scholar 

  178. Karp JM, Leng Teo GS. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell. 2009;4:206–16.

    PubMed  CAS  Google Scholar 

  179. Gordon D, Pavlovska G, Uney JB, Wraith DC, Scolding NJ. Human mesenchymal stem cells infiltrate the spinal cord, reduce demyelination, and localize to white matter lesions in experimental autoimmune encephalomyelitis. J Neuropathol Exp Neurol. 2010;69:1087–95.

    PubMed  Google Scholar 

  180. Rice CM, Scolding N. Adult human mesenchymal cells proliferate and migrate in response to chemokines expressed in demyelination. Cell Adh Migr. 2010;4:235–40.

    PubMed  Google Scholar 

  181. da Silva ML, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci. 2006;119:2204–13.

    Google Scholar 

  182. Mosna F, Sensebe L, Krampera M. Human bone marrow and adipose tissue mesenchymal stem cells: a user’s guide. Stem Cells Dev. 2010;19:1449–70.

    PubMed  CAS  Google Scholar 

  183. Zuba-Surma EK, Kucia M, Ratajczak J, Ratajczak MZ. “Small stem cells” in adult tissues: very small embryonic-like stem cells stand up! Cytometry A. 2009;75:4–13.

    PubMed  Google Scholar 

  184. Takakura N, et al. A role for hematopoietic stem cells in promoting angiogenesis. Cell. 2000;102:199–209.

    PubMed  CAS  Google Scholar 

  185. Burt RK, Traynor AE, Oyama Y, Barr WG. Plasticity of hematopoietic stem cells: enough to induce tolerance and repair tissue? Arthritis Rheum. 2002;46:855–8.

    PubMed  Google Scholar 

  186. Fu X, Sun X. Can hematopoietic stem cells be an alternative source for skin regeneration? Ageing Res Rev. 2009;8:244–9.

    PubMed  CAS  Google Scholar 

  187. Zhou P, Wirthlin L, McGee J, Annett G, Nolta J. Contribution of human hematopoietic stem cells to liver repair. Semin Immunopathol. 2009;31:411–9.

    PubMed  Google Scholar 

  188. Simmons PJ, Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood. 1991;78:55–62.

    PubMed  CAS  Google Scholar 

  189. Psaltis PJ, et al. Enrichment for STRO-1 expression enhances the cardiovascular paracrine activity of human bone marrow-derived mesenchymal cell populations. J Cell Physiol. 2010;223:530–40.

    PubMed  CAS  Google Scholar 

  190. Stewart K, et al. STRO-1, HOP-26 (CD63), CD49a and SB-10 (CD166) as markers of primitive human marrow stromal cells and their more differentiated progeny: a comparative investigation in vitro. Cell Tissue Res. 2003;313:281–90.

    PubMed  CAS  Google Scholar 

  191. Dennis JE, Carbillet JP, Caplan AI, Charbord P. The STRO-1+ marrow cell population is multipotential. Cells Tissues Organs. 2002;170:73–82.

    PubMed  Google Scholar 

  192. Nasef A, et al. Selected Stro-1-enriched bone marrow stromal cells display a major suppressive effect on lymphocyte proliferation. Int J Lab Hematol. 2009;31:9–19.

    PubMed  CAS  Google Scholar 

  193. Bakondi B, et al. CD133 identifies a human bone marrow stem/progenitor cell sub-population with a repertoire of secreted factors that protect against stroke. Mol Ther. 2009;17:1938–47.

    PubMed  CAS  Google Scholar 

  194. Harris JR, Fisher R, Jorgensen M, Kaushal S, Scott EW. CD133 progenitor cells from the bone marrow contribute to retinal pigment epithelium repair. Stem Cells. 2009;27:457–66.

    PubMed  Google Scholar 

  195. Sasaki H. Administration of human peripheral blood-derived CD133+ cells accelerates functional recovery in a rat spinal cord injury model. Spine (Phila Pa 1976). 2009;34:249–54.

    Google Scholar 

  196. Rice CM, Clavel C, Mazo M, Prosper F, Scolding N. Multipotent adult progenitor cell isolation and proliferation in cytokine and serum free medium conditioned by rat B104 cells. Br J Haematol. 2010;148:441–4.

    PubMed  Google Scholar 

  197. Wagner W, Ho A. Mesenchymal stem cell preparations – comparing apples and oranges. Stem Cell Rev Rep. 2007;3:239–48.

    Google Scholar 

  198. Cogle CR, et al. Bone marrow transdifferentiation in brain after transplantation: a retrospective study. Lancet. 2004;363:1432–7.

    PubMed  CAS  Google Scholar 

  199. Mezey E, et al. Transplanted bone marrow generates new neurons in human brains. Proc Natl Acad Sci USA. 2003;100:1364–9.

    PubMed  CAS  Google Scholar 

  200. Prockop DJ, et al. Defining the risks of mesenchymal stromal cell therapy. Cytotherapy. 2010;12:576–8.

    PubMed  Google Scholar 

  201. Miura M, et al. Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells. 2006;24:1095–103.

    PubMed  Google Scholar 

  202. Dahl JA, et al. Genetic and epigenetic instability of human bone marrow mesenchymal stem cells expanded in autologous serum or fetal bovine serum. Int J Dev Biol. 2008;52:1033–42.

    PubMed  CAS  Google Scholar 

  203. Tonti GA, Mannello F. From bone marrow to therapeutic applications: different behaviour and genetic/epigenetic stability during mesenchymal stem cell expansion in autologous and foetal bovine sera? Int J Dev Biol. 2008;52:1023–32.

    PubMed  Google Scholar 

  204. Alves H, et al. A link between the accumulation of DNA damage and loss of multipotency of human mesenchymal stromal cells. J Cell Mol Med. 2009;14(12):2729–38.

    Google Scholar 

  205. Kretlow JD, et al. Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells. BMC Cell Biol. 2008;9:60.

    PubMed  Google Scholar 

  206. Crisostomo PR, et al. High passage number of stem cells adversely affects stem cell activation and myocardial protection. Shock. 2006;26:575–80.

    PubMed  CAS  Google Scholar 

  207. Dominici M, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

    PubMed  CAS  Google Scholar 

  208. Dominici M, Paolucci P, Conte P, Horwitz EM. Heterogeneity of multipotent mesenchymal stromal cells: from stromal cells to stem cells and vice versa. Transplantation. 2009;87:S36–42.

    PubMed  Google Scholar 

  209. Burt RK, et al. Clinical applications of blood-derived and marrow-derived stem cells for nonmalignant diseases. JAMA. 2008;299:925–36.

    PubMed  CAS  Google Scholar 

  210. Grigoriadis N, et al. Variable behavior and complications of autologous bone marrow mesenchymal stem cells transplanted in experimental autoimmune encephalomyelitis. Exp Neurol. 2011;230:78–89.

    PubMed  Google Scholar 

  211. Snyder EY. The, risk of putting something where it does not belong: Mesenchymal stem cells produce masses in the brain. Exp Neurol. 2011;230:75–7.

    PubMed  Google Scholar 

  212. Hunt DP, et al. Effects of direct transplantation of multipotent mesenchymal stromal/stem cells into the demyelinated spinal cord. Cell Transplant. 2008;17:865–73.

    PubMed  CAS  Google Scholar 

  213. Barbosa da Fonseca LM, et al. Migration and homing of bone-marrow mononuclear cells in chronic ischemic stroke after intra-arterial injection. Exp Neurol. 2010;221(1):122–8.

    PubMed  Google Scholar 

  214. Yoshihara T, et al. Neuroprotective effect of bone marrow-derived mononuclear cells promoting functional recovery from spinal cord injury. J Neurotrauma. 2007;24:1026–36.

    PubMed  Google Scholar 

  215. Schachinger V, et al. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur Heart J. 2006;27:2775–83.

    PubMed  Google Scholar 

  216. Wollert KC, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet. 2004;364:141–8.

    PubMed  Google Scholar 

  217. Lyra AC, et al. Infusion of autologous bone marrow mononuclear cells through hepatic artery results in a short-term improvement of liver function in patients with chronic liver disease: a pilot randomized controlled study. Eur J Gastroenterol Hepatol. 2009;22:33–42.

    Google Scholar 

  218. Motukuru V, Suresh KR, Vivekanand V, Raj S, Girija KR. Therapeutic angiogenesis in Buerger’s disease (thromboangiitis obliterans) patients with critical limb ischemia by autologous transplantation of bone marrow mononuclear cells. J Vasc Surg. 2008;48:53S–60.

    PubMed  Google Scholar 

  219. Savitz SI, et al. Intravenous autologous bone marrow mononuclear cells for ischemic stroke. Ann Neurol. 2011;70(1):59–69.

    PubMed  Google Scholar 

  220. van der Bogt KE, et al. Comparison of different adult stem cell types for treatment of myocardial ischemia. Circulation. 2008;118:S121–9.

    PubMed  Google Scholar 

  221. Samdani AF, Paul C, Betz RR, Fischer I, Neuhuber B. Transplantation of human marrow stromal cells and mono-nuclear bone marrow cells into the injured spinal cord: a comparative study. Spine (Phila Pa 1976). 2009;34:2605–12.

    Google Scholar 

  222. Sasaki M, et al. Transplantation of an acutely isolated bone marrow fraction repairs demyelinated adult rat spinal cord axons. Glia. 2001;35:26–34.

    PubMed  CAS  Google Scholar 

  223. Rice CM, et al. A safety and feasibility study of intravenous autologous bone marrow stem cells in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2007;78(9):1014–38. Ref Type: Abstract.

    Google Scholar 

  224. Karussis D, et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol. 2010;67:1187–94.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil Scolding FRCP, Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Scolding, N. (2013). Future Therapies for Progressive Multiple Sclerosis. In: Wilkins, A. (eds) Progressive Multiple Sclerosis. Springer, London. https://doi.org/10.1007/978-1-4471-2395-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2395-8_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2394-1

  • Online ISBN: 978-1-4471-2395-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics