Skip to main content

Mesh Processing

  • 3302 Accesses

Overview

In computer graphics applications, three-dimensional models are almost always represented using polygonal meshes. A mesh in its simplest form consists of a set of vertices, polygons, and optionally a number of additional vertex and polygonal attributes. The complexity of a mesh can vary from low to very high depending on requirements such as rendering quality, speed and resolution. A wide spectrum of mesh processing algorithms is used by graphics and game developers for a variety of applications such as generating, simplifying, smoothing, remapping and transforming meshes. Several types of data structures and file formats are also used to store mesh data.

This chapter discusses the geometrical and topological aspects related to three-dimensional meshes and their processing. It also presents important data structures and algorithms used for operations such as mesh simplification, mesh subdivision, planar embedding, and polygon triangulation.

Keywords

  • Convex Polygon
  • Triangular Mesh
  • Subdivision Scheme
  • Simple Polygon
  • Boundary Vertex

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4471-2340-8_8
  • Chapter length: 51 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-1-4471-2340-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.99
Price excludes VAT (USA)
Hardcover Book
USD   89.99
Price excludes VAT (USA)
Fig. 8.1
Fig. 8.2
Fig. 8.3
Fig. 8.4
Fig. 8.5
Fig. 8.6
Fig. 8.7
Fig. 8.8
Fig. 8.9
Listing 8.1
Fig. 8.10
Fig. 8.11
Listing 8.2
Listing 8.3
Fig. 8.12
Listing 8.4
Fig. 8.13
Fig. 8.14
Listing 8.5
Listing 8.6
Fig. 8.15
Listing 8.7
Listing 8.8
Fig. 8.16
Fig. 8.17
Fig. 8.18
Fig. 8.19
Fig. 8.20
Listing 8.9
Fig. 8.21
Fig. 8.22
Fig. 8.23
Fig. 8.24
Fig. 8.25
Fig. 8.26
Fig. 8.27
Fig. 8.28
Fig. 8.29
Fig. 8.30
Fig. 8.31
Fig. 8.32
Listing 8.10
Listing 8.11
Fig. 8.33
Fig. 8.34
Fig. 8.35
Fig. 8.36
Fig. 8.37
Fig. 8.38
Fig. 8.39
Fig. 8.40
Fig. 8.41
Listing 8.12
Fig. 8.42
Fig. 8.43
Fig. 8.44
Fig. 8.45
Fig. 8.46
Listing 8.13

References

  • Baumgart, B. (1972). Winged edge polyhedron representation (C. S. D. Stanford Artificial Intelligence Project, Trans.): Stanford University.

    Google Scholar 

  • Bennis, C., Vezien, J.-M., & Inglesias, G. (1991). Piecewise surface flattening for non-distorted texture mapping. SIGGRAPH Computer Graphics, 25(4), 237–246.

    CrossRef  Google Scholar 

  • Botsch, M. (2010). Polygon mesh processing. Natick: A K Peters.

    Google Scholar 

  • Catmull, E., & Clark, J. (1978, September). Recursively generated B-spline surfaces on arbitrary topological meshes. Computer Aided Design, 10, 350–355.

    CrossRef  Google Scholar 

  • De Loera, J. A., Rambau, J., & Santos, F. (2010). Triangulations: Structures for algorithms and applications. Heidelberg: Springer.

    MATH  Google Scholar 

  • Edelsbrunner, H. (2001). Geometry and topology for mesh generation. Cambridge: Cambridge University Press.

    MATH  CrossRef  Google Scholar 

  • Floater, M., & Hormann, K. (2005). Surface parameterization: A tutorial and survey. In Advances in multiresolution for geometric modelling (pp. 157–186). Heidelberg: Springer.

    CrossRef  Google Scholar 

  • Foley, J. D. (1996). Computer graphics: Principles and practice (2nd ed. in C.). Reading/Wokingham: Addison-Wesley.

    Google Scholar 

  • Garland, M. (1999). Quadric-based polynomial surface simplification. Ph.D., Carnegie Mellon, Pittsburgh (CMU-CS-99-105).

    Google Scholar 

  • Kettner, L. (1998). Designing a data structure for polyhedral surfaces. In: Proceedings of the fourteenth annual symposium on Computational geometry, Minneapolis, Minnesota, United States.

    Google Scholar 

  • Kobbelt, L. (2000). Root3-subdivision. In: Proceedings of the 27th annual conference on Computer graphics and interactive techniques.

    Google Scholar 

  • Loop, C. (1987). Smooth subdivision surfaces based on triangles. M.Sc., The University of Utah, Utah.

    Google Scholar 

  • Melax, S. (1998, November). A simple, fast and effective polygon reduction algorithm. Game Developer, 44–49.

    Google Scholar 

  • Nielsen, F. (2005). Visual computing: Geometry, graphics, and vision. Hingham/London: Charles River Media/Transatlantic, (distributor).

    Google Scholar 

  • Saba, S., Yavneh, I., Gotsman, C., & Sheffer, A. (2005). Practical spherical embedding of manifold triangle meshes. In: Proceedings of the international conference on shape modeling and applications 2005, Boston

    Google Scholar 

  • Schroeder, W. J., Zarge, J. A., & Lorensen, W. E. (1992). Decimation of triangle meshes. SIGGRAPH Computer Graphics, 26(2), 65–70.

    CrossRef  Google Scholar 

  • Sheffer, A., Praun, E., & Rose, K. (2006). Mesh parameterization methods and their applications. Foundations and Trends in Computer Graphics and Vision, 2(2), 105–171.

    CrossRef  Google Scholar 

  • Shirley, P., & Ashikhmin, M. (2007). Fundamentals of computer graphics (2nd ed.). Wellesley/London: AK Peters.

    Google Scholar 

  • Zorin, D. (2006). Subdivision of arbitrary meshes: Algorithms and theory (Institute of Mathematical Sciences lecture notes series). Singapore: World Scientific.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramakrishnan Mukundan .

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Mukundan, R. (2012). Mesh Processing. In: Advanced Methods in Computer Graphics. Springer, London. https://doi.org/10.1007/978-1-4471-2340-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2340-8_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2339-2

  • Online ISBN: 978-1-4471-2340-8

  • eBook Packages: Computer ScienceComputer Science (R0)