Applications of Model Predictive Vibration Control

  • Gergely Takács
  • Boris Rohal’-Ilkiv


This chapter will briefly review some of the existing applications of model predictive control for vibration attenuation or its closely related fields. The application of model predictive control as a vibration reduction strategy is not common, and there are only a handful of available publications related to this field.


Model Predictive Control Vibration Control Tune Mass Damper Active Vibration Control Active Noise Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Agrawal BN, Bang H (1996) Adaptive structures for large precision antennas. Acta Astronaut 38(3):175–183. doi: 10.1016/0094-5765(96)00062-8, Google Scholar
  2. 2.
    Ahmed B, Pota H (2011) Dynamic compensation for control of a rotary wing UAV using positive position feedback. J Intell Rob Syst 61:43–56. doi: 10.1007/s10846-010-9487-7,
  3. 3.
    Albizuri J, Fernandes M, Garitaonandia I, Sabalza X, Uribe-Etxeberria R, Hernández J (2007) An active system of reduction of vibrations in a centerless grinding machine using piezoelectric actuators. Int J Mach Tools Manuf 47(10):1607–1614. doi: 10.1016/j.ijmachtools.2006.11.004, Google Scholar
  4. 4.
    Amer Y, Bauomy H (2009) Vibration reduction in a 2DOF twin-tail system to parametric excitations. Commun Nonlinear Sci Numer Simul 14(2):560–573. doi:  10.1016/j.cnsns.2007.10.005, Google Scholar
  5. 5.
    Aslam M, Xiong-Liang Y, Zhong-Chao D (2006) Review of magnetorheological (MR) fluids and its applications in vibration control. J Mar Sci Appl 5(3):17–29CrossRefGoogle Scholar
  6. 6.
    Bai M, Ou KY (2002) Experimental evaluation of adaptive predictive control for rotor vibration suppression. IEEE Trans Control Syst Technol 10(6):895–901. doi: 10.1109/TCST.2002.804124 Google Scholar
  7. 7.
    Billah KY, Scanlan RH (1991) Resonance, Tacoma Narrows Bridge failure, and undergraduate physics textbooks. Am J Phys 59(2):118CrossRefGoogle Scholar
  8. 8.
    Bittanti S, Cuzzola FA (2002) Periodic active control of vibrations in helicopters: a gain-scheduled multi-objective approach. Control Eng Pract 10(10):1043–1057. doi: 10.1016/S0967-0661(02)00052-7,
  9. 9.
    Bohn C, Cortabarria A, Härtel V, Kowalczyk K (2004) Active control of engine-induced vibrations in automotive vehicles using disturbance observer gain scheduling. Control Eng Pract 12(8):1029–1039 (in Special Section on Emerging Technologies for Active Noise and Vibration Control Systems). doi: 10.1016/j.conengprac.2003.09.008,
  10. 10.
    Boscariol P, Gasparetto A, Zanotto V (2010) Modell predictive control of a flexible links mechanism. J Intell Rob Syst 58:125–147. doi: 10.1007/s10846-009-9347-5, Google Scholar
  11. 11.
    Bouzidane A, Thomas M (2008) An electrorheological hydrostatic journal bearing for controlling rotor vibration. Comput Struct 86(3–5):463–472. (Smart Structures) doi: 10.1016/j.compstruc.2007.02.006, Google Scholar
  12. 12.
    Camino J, Arruda J (2009) \({\fancyscript{H}}_2\) and \({\fancyscript{H}}_\infty\) feedforward and feedback compensators for acoustic isolation. Mech Syst Sig Process 23(8):2538–2556. doi: 10.1016/j.ymssp.2009.04.006,
  13. 13.
    Carotti A, Lio G (1991) Experimental active control: bench tests on controller units. Eng Struct 13(3):242–252. doi: 10.1016/0141-0296(91)90036-C,
  14. 14.
    Cavagna L, Ricci S, Scotti A (2009) Active aeroelastic control over a four control surface wing model. Aerosp Sci Technol 13(7):374–382. doi:  10.1016/j.ast.2009.06.009, Google Scholar
  15. 15.
    Chang CS, Liu TS (2007) LQG controller for active vibration absorber in optical disk drive. IEEE Trans Magn 43(2):799–801. doi: 10.1109/TMAG.2006.888417 Google Scholar
  16. 16.
    Choi SB, Hong SR, Sung KG, Sohn JW (2008) Optimal control of structural vibrations using a mixed-mode magnetorheological fluid mount. Int J Mech Sci 50(3):559–568. doi: 10.1016/j.ijmecsci.2007.08.001, Google Scholar
  17. 17.
    Creasy M, Leo D, Farinholt K (2008) Adaptive positive position feedback for actively absorbing energy in acoustic cavities. J Sound Vib 311(1–2):461–472. doi: 10.1016/j.jsv.2007.09.013, Google Scholar
  18. 18.
    Cunningham M, Jenkins D, Clegg W, Bakush M (1995) Active vibration control and actuation of a small cantilever for applications in scanning probe instruments. Sens Actuators A 50(1–2):147–150. doi: 10.1016/0924-4247(96)80099-9,
  19. 19.
    Cychowski M, Szabat K (2010) Efficient real-time model predictive control of the drive system with elastic transmission. IET Control Theory Appl 4(1):37–49. doi: 10.1049/iet-cta.2008.0358
  20. 20.
    Darus IM, Tokhi M (2005) Soft computing-based active vibration control of a flexible structure. Eng Appl Artif Intell 18(1):93–114. doi:  10.1016/j.engappai.2004.08.017,
  21. 21.
    DeWALT Industrial Tool Co (2007) DeWALT active vibration control.
  22. 22.
    du Plessis A (2010) Tuned mass damper on display in Taipei 101. Photograph licensed under the Creative Commons Attribution 3.0 Unported license.
  23. 23.
    Eielsen A, Fleming A (2010) Passive shunt damping of a piezoelectric stack nanopositioner. In: American control conference (ACC) 2010, pp 4963–4968Google Scholar
  24. 24.
    Eissa M, Bauomy H, Amer Y (2007) Active control of an aircraft tail subject to harmonic excitation. Acta Mech Sin 23:451–462. doi: 10.1007/s10409-007-0077-2 Google Scholar
  25. 25.
    El-Badawy AA, Nayfeh AH (2001) Control of a directly excited structural dynamic model of an F-15 tail section. J Franklin Inst 338(2–3):133–147. doi:  10.1016/S0016-0032(00)00075-2,
  26. 26.
    Eski I, Yildirim S (2009) Vibration control of vehicle active suspension system using a new robust neural network control system. Simul Modell Pract Theory 17(5):778–793. doi: 10.1016/j.simpat.2009.01.004,
  27. 27.
    Eure KW (1998) Adaptive predictive feedback techniques for vibration control. Doctoral dissertation, Virginia Polytechnic Institute and State University, BlacksburgGoogle Scholar
  28. 28.
    Fei H, Zheng G, Liu Z (2006) An investigation into active vibration isolation based on predictive control: Part I: Energy source control. J Sound Vib 296(1–2):195–208. doi: 10.1016/j.jsv.2006.02.021, Google Scholar
  29. 29.
    Fischer D, Isermann R (2004) Mechatronic semi-active and active vehicle suspensions. Control Eng Pract 12(11):1353–1367 (Mechatronic Systems). doi:  10.1016/j.conengprac.2003.08.003,
  30. 30.
    GlobalSecurity (2010) Dhruv advanced light helicopter.
  31. 31.
    Guclu R (2006) Sliding mode and PID control of a structural system against earthquake. Math Comput Modell 44(1–2):210–217. doi: 10.1016/j.mcm.2006.01.014, (Advances in business modeling and Decision technologies, pp 1–95)
  32. 32.
    Guclu R, Yazici H (2008) Vibration control of a structure with ATMD against earthquake using fuzzy logic controllers. J Sound Vib 318(1–2):36–49. doi:  10.1016/j.jsv.2008.03.058,
  33. 33.
    Hassan M, Dubay R, Li C, Wang R (2007) Active vibration control of a flexible one-link manipulator using a multivariable predictive controller. Mechatronics 17(1):311–323CrossRefGoogle Scholar
  34. 34.
    Helfer M (2006) Body vibration due to road excitation. Released to the public domain by the copyright holder. FKFS, Stuttgart.
  35. 35.
    Henrioulle K, Dehandschutter W, Sas P (1998) Design of an active noise control system using a distributed actuator. Flow, Turbulence and Combustion 61:189–209. doi: 10.1023/A:1009901115843
  36. 36.
    HILTI Corporation (2010) Active vibration reduction. Lower vibration for higher productivity. Whitepaper.
  37. 37.
    Hu Q (2009) A composite control scheme for attitude maneuvering and elastic mode stabilization of flexible spacecraft with measurable output feedback. Aerosp Sci Technol 13(2–3):81–91. doi: 10.1016/j.ast.2007.06.007,
  38. 38.
    Hu YR, Ng A (2005) Active robust vibration control of flexible structures. J Sound Vib 288(1–2):43–56. doi: 10.1016/j.jsv.2004.12.015, Google Scholar
  39. 39.
    Huang K, Yu F, Zhang Y (2010) Model predictive controller design for a developed electromagnetic suspension actuator based on experimental data. In: 2010 WASE international conference on information engineering (ICIE), vol 4, pp 152–156. doi: 10.1109/ICIE.2010.327
  40. 40.
    Hubinský P (2010) Riadenie mechatronických systémov s nízkym tlmením, 1st edn. Slovenská technická univerzita v Bratislave, Nakladatel’stvo STU (Control of mechatronic systems with low damping), Bratislava (in Slovak language)Google Scholar
  41. 41.
    Jahromi A, Zabihollah A (2010) Linear quadratic regulator and fuzzy controller application in full-car model of suspension system with magnetorheological shock absorber. In: 2010 IEEE/ASME international conference on mechatronics and embedded systems and applications (MESA), pp 522–528. doi: 10.1109/MESA.2010.5552010
  42. 42.
    Jastrzebski RP, Hynynen KM, Smirnov A (2010) \({\fancyscript{H}}_\infty\) control of active magnetic suspension. Mech Syst Sig Process 24(4):995–1006. doi:  10.1016/j.ymssp.2009.10.008,
  43. 43.
    Jung WJ, Jeong WB, Hong SR, Choi SB (2004) Vibration control of a flexible beam structure using squeeze-mode ER mount. J Sound Vib 273(1–2):185–199. doi:  10.1016/S0022-460X(03)00478-4, Google Scholar
  44. 44.
    Kang B, Mills JK (2005) Vibration control of a planar parallel manipulator using piezoelectric actuators. J Intell Rob Syst 42:51–70. doi: 10.1007/s10846-004-3028-1 Google Scholar
  45. 45.
    Karimi H, Zapateiro M, Luo N, Rossell J (2010) Feedback vibration control of a base-isolated building with delayed measurements using \(\fancyscript {H}_\infty\); techniques. In: American control conference (ACC) 2010, pp 750–755Google Scholar
  46. 46.
    Kawabe H, Tsukiyama N, Yoshida K (2006) Active vibration damping based on neural network theory. Mater Sci Eng A 442(1–2):547–550, Proceedings of the 14th international conference on internal friction and mechanical spectroscopy. doi: 10.1016/j.msea.2006.02.234,
  47. 47.
    Kawasaki Heavy Industries, Ltd (2011) AVR (Active Vibration Reduction) system for BK117 Helicopter.
  48. 48.
    Kim B, Washington GN (2008) Active vibration control of a cantilevered beam using model predictive sliding mode control. In: 49th AIAA/ASME/ASCE/AHS/ASC structural dynamics and materials conference, Schaumburg, pp 2008–2038Google Scholar
  49. 49.
    Kim I, Kim YS (2009) Active vibration control of trim panel using a hybrid controller to regulate sound transmission. Int J Precis Eng Manuf 10:41–47. doi: 10.1007/s12541-009-0007-2 Google Scholar
  50. 50.
    Kim Y, Langari R, Hurlebaus S (2009) Seismic response control of a large civil structure equipped with magnetorheological dampers. In: IEEE international conference on fuzzy systems 2009. FUZZ-IEEE 2009, pp 215–220. doi: 10.1109/FUZZY.2009.5277045
  51. 51.
    Kok J, van Heck J, Huisman R, Muijderman J, Veldpaus F (1997) Active and semi-active control of suspension systems for commercial vehicles based on preview. In: Proceedings of the 1997 American control conference, vol 5, pp 2992–2996. doi: 10.1109/ACC.1997.612006
  52. 52.
    Kowalczyk K, Karkosch HJ, Marienfeld PM, Svaricek F (2006) Rapid control prototyping of active vibration control systems in automotive applications. In: Computer aided control system design, 2006 IEEE international conference on control applications, 2006 IEEE international symposium on intelligent control, 2006 IEEE, pp 2677–2682. doi: 10.1109/CACSD-CCA-ISIC.2006.4777062
  53. 53.
    Kozek M, Benatzky C, Schirrer A, Stribersky A (2009) Vibration damping of a flexible car body structure using piezo-stack actuators. Control Eng Pract 19:298–310. doi: 10.1016/j.conengprac.2009.08.001,
  54. 54.
    Krishnaswamy K, Rajamani R, Woo J, Cho Y (2005) Structural vibration control for broadband noise attenuation in enclosures. J Mech Sci Technol 19:1414–1423. doi: 10.1007/BF03023900 Google Scholar
  55. 55.
    Kwak MK, Heo S (2007) Active vibration control of smart grid structure by multiinput and multioutput positive position feedback controller. J Sound Vib 304(1–2):230–245. doi: 10.1016/j.jsv.2007.02.021, Google Scholar
  56. 56.
    Kwon OS, Kim BK, Ih JG (1994) On the positioning of control sources in active noise control of three-dimensional interior space. J Mech Sci Technol 8:283–292. doi: 10.1007/BF02953357 Google Scholar
  57. 57.
    Landis T (2001) NASA Dryden Flight Research Center (NASA-DFRC). Full scale dynamic model of the EOS-AM1 satellite. Image ID: EC01-0288-2Google Scholar
  58. 58.
    Larchez A (2007) Finite element modelling of piezoelectric structures. PhD thesis, School of Electrical, Computer and Telecommunication Engineering, University of Wollongong, WollongongGoogle Scholar
  59. 59.
    Lau K, Zhou L, Tao X (2002) Control of natural frequencies of a clamped-clamped composite beam with embedded shape memory alloy wires. Compos Struct 58(1):39–47. doi: 10.1016/S0263-8223(02)00042-9,
  60. 60.
    Lee J, Kim J, Cheong C (1999) Piezoelectric smart structures for noise reduction in a cabin. J Mech Sci Technol 13:451–458. doi: 10.1007/BF02947714 Google Scholar
  61. 61.
    Lee JH, Su RK, Lee PK, Lam LC (2002) Semi-active damping device for vibration control of buildings using magnetorheological fluid. In: Anson M, Ko J, Lam E (eds) Advances in building technology, Elsevier, Oxford, pp 969–976. doi: 10.1016/B978-008044100-9/50122-4,
  62. 62.
    Li K, Kosmatopoulos E, Ioannou P, Boussalis H, Mirmirani M, Chassiakos A (1998) Control techniques or a large segmented reflector. In: Proceedings of the 37th IEEE conference on decision and control 1998, vol 1, pp 813–818. doi: 10.1109/CDC.1998.760789
  63. 63.
    Li M, Lim TC, Lee JH (2008) Simulation study on active noise control for a 4-T MRI scanner. Magn Reson Imaging 26(3):393–400. doi:  10.1016/j.mri.2007.08.003,
  64. 64.
    Liebherr-Elektronik GmbH (2011) Liebherr electronics. Catalog. 10559768-04/2011Google Scholar
  65. 65.
    Liebherr-International Deutschland GmbH (2010) Data sheet LHM 400—LIEBHERR mobile harbour crane LHM 400.
  66. 66.
    Lin J, Liu WZ (2006) Experimental evaluation of a piezoelectric vibration absorber using a simplified fuzzy controller in a cantilever beam. J Sound Vib 296(3):567–582. doi: 10.1016/j.jsv.2006.01.066,
  67. 67.
    Lin LC, Lee TE (1997) Integrated PID-type learning and fuzzy control for flexible-joint manipulators. J Intell Rob Syst 18:47–66. doi: 10.1023/A:1007942528058 Google Scholar
  68. 68.
    Liu SJ, Huang ZH, Chen YZ (2004) Automobile active suspension system with fuzzy control. J Cent South Univ Technol 11:206–209. doi: 10.1007/s11771-004-0042-1 Google Scholar
  69. 69.
    Liu T, Ren Y (2011) Vibration and flutter of wind turbine blade modeled as anisotropic thin-walled closed-section beam. Science China Technol Sci pp 1–8. doi: 10.1007/s11431-010-4230-y
  70. 70.
  71. 71.
    Lu H, Meng G (2006) An experimental and analytical investigation of the dynamic characteristics of a flexible sandwich plate filled with electrorheological fluid. Int J Adv Manuf Technol 28:1049–1055. doi: 10.1007/s00170-004-2433-8 Google Scholar
  72. 72.
    Luo T, Hu Y (2002) Vibration suppression techniques for optical inter-satellite communications. In: IEEE 2002 international conference on communications, circuits and systems and west sino expositions, vol 1, pp 585–589. doi: 10.1109/ICCCAS.2002.1180687
  73. 73.
    Marzbanrad J, Ahmadi G, Jha R (2004) Optimal preview active control of structures during earthquakes. Eng Struct 26(10):1463–1471. doi:  10.1016/j.engstruct.2004.05.010, Google Scholar
  74. 74.
    Mcmanus SJ, Clair KAS, Boileau P, Boutin J, Rakheja S (2002) Evaluation of vibration and shock attenuation performance of a suspension seat with a semi-active magnetorheological  fluid damper. J Sound Vib 253(1):313–327. doi:  10.1006/jsvi.2001.4262,
  75. 75.
    Mehra R, Amin J, Hedrick K, Osorio C, Gopalasamy S (1997) Active suspension using preview information and model predictive control. In: Proceedings of the 1997 IEEE international conference on control applications, pp 860–865. doi: 10.1109/CCA.1997.627769
  76. 76.
    Moon SJ, Lim CW, Kim BH, Park Y (2007) Structural vibration control using           linear magnetostrictive   actuators. J Sound Vib 302(4–5):875–891. doi:  10.1016/j.jsv.2006.12.023, Google Scholar
  77. 77.
    Moon SM, Clark RL, Cole DG (2005) The recursive generalized predictive feedback control: theory and experiments. J Sound Vib 279(1-2):171–199. doi: 10.1016/j.jsv.2003.12.034, Google Scholar
  78. 78.
    Moon SM, Cole DG, Clark RL (2006) Real-time implementation of adaptive feedback and feedforward generalized predictive control algorithm. J Sound Vib 294(1–2):82–96. doi: 10.1016/j.jsv.2005.10.017,
  79. 79.
    NASA Kennedy Space Center (NASA-KSC) (2003) Ground vibration test of a mobile launcher platform with the solid rocket boosters. Image ID: KSC-03PD-3153Google Scholar
  80. 80.
    NASA Langley Research Center (NASA-LaRC) (2002) Passive viscous damping struts have been fabricated. Image ID: EL-2002-00103Google Scholar
  81. 81.
    NASA Langley Research Center (NASA-LaRC) (2002) Truss-boom test hardware. Image ID: EL-2002-00100Google Scholar
  82. 82.
    NASA Marshall Space Flight Center (NASA-MSFC) (1971) Vibration testing of the Apollo telescope mount. Image ID: MSFC-7019987Google Scholar
  83. 83.
    NASA Marshall Space Flight Center (NASA-MSFC) (1978) Orbiter Enterprise test stand installation. Image ID: MSFC-7992411Google Scholar
  84. 84.
    NASA Marshall Space Flight Center (NASA-MSFC) (1978) Orbiter Enterprise test stand installation. Image ID: MSFC-7992452Google Scholar
  85. 85.
    NASA Marshall Space Flight Center (NASA-MSFC) (1996) NASA Headquarters–Greatest Images of NASA (NASA-HQ-GRIN). Image ID: GPN-2000-001982Google Scholar
  86. 86.
    Neat G, Melody J, Lurie B (1998) Vibration attenuation approach for spaceborne optical interferometers. IEEE Trans Control Syst Technol 6(6):689–700. doi: 10.1109/87.726529 Google Scholar
  87. 87.
    Neupert J, Arnold E, Schneider K, Sawodny O (2010) Tracking and anti-sway control for boom cranes. Control Eng Pract 18(1):31–44. doi:  10.1016/j.conengprac.2009.08.003, Google Scholar
  88. 88.
    Noise & Vibration Control Ltd Co (2009) Electro-dynamic shakers connected to structure for active vibration control experiment.
  89. 89.
    Ok SY, Kim DS, Park KS, Koh HM (2007) Semi-active fuzzy control of cable-stayed bridges using magneto-rheological dampers. Eng Struct 29(5):776–788. doi: 10.1016/j.engstruct.2006.06.020, Google Scholar
  90. 90.
    Pan MC, Chien C (2010) Adaptive hybrid tracking-error control for DVD drives in vehicular systems. Microsyst Technol 16:279–286. doi: 10.1007/s00542-009-0856-8 Google Scholar
  91. 91.
    Pan X, Tso Y, Juniper R (2008) Active control of low-frequency hull-radiated noise. J Sound Vib 313(1–2):29–45. doi: 10.1016/j.jsv.2007.11.022, Google Scholar
  92. 92.
    Pan X, Tso Y, Juniper R (2008) Active control of radiated pressure of a submarine hull. J Sound Vib 311(1–2):224–242. doi: 10.1016/j.jsv.2007.09.001, Google Scholar
  93. 93.
    Patton R (1994) Design of an active vibration control system for isolation of an optical bench. In: Proceedings of the 26th southeastern symposium on system theory 1994, pp 43–46. doi: 10.1109/SSST.1994.287913
  94. 94.
    Ping H, Ju Z (2008) Explicit model predictive control system and its application in active vibration control of mechanical system of elevator. In: Control and decision conference 2008. CCDC 2008. Chinese, pp 3738–3742. doi: 10.1109/CCDC.2008.4598029
  95. 95.
    Pospiech T, Hubinský P (2009) Beschleunigungsprofil für Abfüllanlagen. Resonanzfreies Positionieren von schwingungsfähigen Systemen am Beispiel von offenen Behältern mit Flüssigkeiten. Automatisierungstechnische Praxis (Acceleration profile for bottling. Resonance-free positioning of oscillatory systems using the example of open containers with liquids) 51(6):19–21 (in German language)Google Scholar
  96. 96.
    Pospiech T, Hubinský P (2009) Input shaping for slosh-free moving containers with liquid. Int J Mech Control 9(02):13–20Google Scholar
  97. 97.
    Pospiech T, Hubinský P (2009) Schwingungsfähige Systeme resonanzfrei Positionieren. Elektrotechnik + Automation (Resonance-free positionoing of vibrating systems) 9:46–49 (in German language)Google Scholar
  98. 98.
    Pradhan S (2005) Vibration suppression of FGM shells using embedded magnetostrictive layers. Int J Solids Struct 42(9–10):2465–2488. doi: 10.1016/j.ijsolstr.2004.09.049, Google Scholar
  99. 99.
    Preumont A (2002) Vibration control of active structures, 2nd edn. Kluwer Academic, DordrechtGoogle Scholar
  100. 100.
    Preumont A, Seto K (2008) Active control of structures, 3rd edn. Wiley, ChichesterCrossRefGoogle Scholar
  101. 101.
    Qiu ZC, Wu HX, Ye CD (2009) Acceleration sensors based modal identification and active vibration control of flexible smart cantilever plate. Aerosp Sci Technol 13(6):277–290. doi: 10.1016/j.ast.2009.05.003,
  102. 102.
    Richelot J, Bordeneuve-Guibe J, Pommier-Budinger V (2004) Active control of a clamped beam equipped with piezoelectric actuator and sensor using generalized predictive control. In: 2004 IEEE international symposium on industrial electronics, vol 1, pp 583–588. doi: 10.1109/ISIE.2004.1571872
  103. 103.
    Ríos-Gutiérrez M, Silva-Navarro G (2010) Suppression of mechanical vibrations in a building like structure by means of a piezoelectric patch actuator and positive acceleration feedback. In: 2010 7th international conference on electrical engineering computing science and automatic control (CCE), pp 452–457. doi: 10.1109/ICEEE.2010.5608581
  104. 104.
    Rossing TD, Moore RF, Wheeler PA (2001) The science of sound. 3rd edn. Addison Wesley, San FranciscoGoogle Scholar
  105. 105.
    Roy T, Chakraborty D (2009) Optimal vibration control of smart fiber reinforced composite shell structures using improved genetic algorithm. J Sound Vib 319(1–2):15–40. doi: 10.1016/j.jsv.2008.05.037,
  106. 106.
    Shan J, Liu HT, Sun D (2005) Slewing and vibration control of a single-link flexible manipulator by positive position feedback (PPF). Mechatronics 15(4):487–503. doi: 10.1016/j.mechatronics.2004.10.003, Google Scholar
  107. 107.
    Shenoi S (2011) Editorial. Int J Crit Infrastruct Prot 4(1):1–2. doi: 10.1016/j.ijcip.2011.03.004, 00084
  108. 108.
    Shi P, Liu B, Hou D (2008) Torsional vibration suppression of drive system based on DMC method. In: 7th world congress on intelligent control and automation 2008. WCICA 2008, pp 4789–4792. doi: 10.1109/WCICA.2008.4593699
  109. 109.
    Shoureshi R, Knurek T (1996) Automotive applications of a hybrid active noise and vibration control. IEEE Control Syst Mag 16(6):72–78. doi: 10.1109/37.546272
  110. 110.
    Shoureshi R, Gasser R, Vance J (1997) Automotive applications of a hybrid active noise and vibration control. In: Proceedings of the IEEE international symposium on industrial electronics 1997. ISIE ’97, vol 3, pp 1071–1076. doi: 10.1109/ISIE.1997.648888
  111. 111.
    Shustov / WikiMediaorg (2006) Concurrent experiments with two kinematically equivalent to a real prototype building models on a shake-table. Photograph. Online, the file is licensed under the creative commons attribution-share alike 3.0 unported license.
  112. 112.
  113. 113.
    Sikorsky Aircraft Corporation (2010) Sikorsky S-76D helicopter technical information. Technical data sheet.
  114. 114.
    Sikorsky Aircraft Corporation (2010) Sikorsky UH-60M BLACK HAWK helicopter—United States Army multi-mission combat assault helicopter. Technical data sheet.
  115. 115.
    Sikorsky Aircraft Corporation (2010) Sikorsky UH-60M BLACK HAWK helicopter—United States Army multi-mission combat assault helicopter. Technical data sheet.
  116. 116.
  117. 117.
    Sikorsky Aircraft Corporation (2010) X2 technology demonstrator achieves 225 knots, sets new top speed for helicopter—target milestone of 250 knots looms in Q3 2010.
  118. 118.
    Someformofhuman / WikiMedia Commons (2008) The tuned mass damper in Taipei 101. Illustration licensed under the creative commons attribution—share alike 3.0 unported, 2.5 generic, 2.0 generic and 1.0 generic license.
  119. 119.
    Spelta C, Previdi F, Savaresi SM, Fraternale G, Gaudiano N (2009) Control of magnetorheological dampers for vibration reduction in a washing machine. Mechatronics 19(3):410–421. doi: 10.1016/j.mechatronics.2008.09.006, Google Scholar
  120. 120.
    Su YX, Duan BY, Wei Q, Nan RD, Peng B (2002) The wind-induced vibration control of feed supporting system for large spherical radio telescope using electrorheological damper. Mechatronics 13(2):95–110. doi: 10.1016/S0957-4158(01)00042-3,
  121. 121.
    Sun D, Mills JK, Shan J, Tso SK (2004) A PZT actuator control of a single-link flexible manipulator based on linear velocity feedback and actuator placement. Mechatronics 14(4):381–401. doi: 10.1016/S0957-4158(03)00066-7, Google Scholar
  122. 122.
    Sun J, Yang Q (2007) Automotive suspension system with an analytic fuzzy control strategy. In: IEEE international conference on vehicular electronics and safety 2007. ICVES, pp 1–4. doi: 10.1109/ICVES.2007.4456375
  123. 123.
    Sun W, Li J, Zhao Y, Gao H (2010) Vibration control for active seat suspension systems via dynamic output feedback with limited frequency characteristic. Mechatronics (in Press). doi: 10.1016/j.mechatronics.2010.11.001,
  124. 124.
    Sung KG, Han YM, Cho JW, Choi SB (2008) Vibration control of vehicle ER suspension system using fuzzy moving sliding mode controller. J Sound Vib 311(3–5):1004–1019. doi: 10.1016/j.jsv.2007.09.049, Google Scholar
  125. 125.
    Takács G, Rohal’-Ilkiv B (2009) Implementation of the Newton–Raphson MPC algorithm in active vibration control applications. In: Mace BR, Ferguson NS, Rustighi E (eds) Proceedings of the 3rd international conference on noise and vibration: emerging methods, OxfordGoogle Scholar
  126. 126.
    Takács G, Rohal’-Ilkiv B (2009) MPC with guaranteed stability and constraint feasibility on flexible vibrating active structures: a comparative study. In: Hu H (ed) Proceedings of the eleventh IASTED international conference on control and applications, CambridgeGoogle Scholar
  127. 127.
    Takács G, Rohal’-Ilkiv B (2009) Newton–Raphson based efficient model predictive control applied on active vibrating structures. In: Proceedings of the European control control conference, BudapestGoogle Scholar
  128. 128.
    Takács G, Rohal’-Ilkiv B (2009) Newton-Raphson MPC controlled active vibration attenuation. In: Hangos KM (ed) Proceedings of the 28th IASTED international conference on modeling, identification and control, InnsbruckGoogle Scholar
  129. 129.
    The Japan Times (2011) Disaster analysis you may not hear elsewhere., Retrieved 21 June 2011
  130. 130.
    Torra V, Isalgue A, Martorell F, Terriault P, Lovey F (2007) Built in dampers for family homes via SMA: an ANSYS computation scheme based on mesoscopic and microscopic experimental analyses. Eng Struct 29(8):1889–1902. doi: 10.1016/j.engstruct.2006.08.028, Google Scholar
  131. 131.
    Tschida T (2002) NASA Dryden Flight Research Center (NASA-DFRC) Active aeroelastic wing F/A-18 research aircraft during a ground vibration testing. Image ID: EC02-0203-55Google Scholar
  132. 132.
    Tschida T, NASA Dryden Flight Research Center (NASA-DFRC) (2002) The upper wing surface of the active aeroelastic wing F/A-18 test aircraft. Image ID: EC02-0203-46Google Scholar
  133. 133.
    Tzou H, Chai W (2007) Design and testing of a hybrid polymeric electrostrictive/piezoelectric beam with bang-bang control. Mech Syst Sig Process 21(1):417–429. doi: 10.1016/j.ymssp.2005.10.008,
  134. 134.
    United States Geological Survey (2011) Magnitude 9.0—near the east coast of Honshu, Japan., Retrieved 21 June 2011
  135. 135.
    Van den Broeck L, Diehl M, Swevers J (2009) Time Optimal MPC for mechatronic applications. In: Proceedings of the 48th IEEE conference on decision and control, Shanghai, pp 8040–8045Google Scholar
  136. 136.
    Van den Broeck L, Swevers J, Diehl M (2009) Performant design of an input shaping prefilter via embedded optimization. In: Proceedings of the 2009 American control conference, St. Louis, pp 166–171Google Scholar
  137. 137.
    Wahed AKE, Sproston JL, Schleyer GK (2002) Electrorheological and magnetorheological fluids in blast resistant design applications. Mater Des 23(4):391–404. doi: 10.1016/S0261-3069(02)00003-1, Google Scholar
  138. 138.
    Wang M, Fei R (1999) Chatter suppression based on nonlinear vibration characteristic of electrorheological fluids. Int J Mach Tools Manuf 39(12):1925–1934. doi: 10.1016/S0890-6955(99)00039-5,
  139. 139.
    Wei JJ, Qiu ZC, Han JD, Wang YC (2010) Experimental comparison research on active vibration control for flexible piezoelectric manipulator using fuzzy controller. J Intell Rob Syst 59:31–56. doi: 10.1007/s10846-009-9390-2 Google Scholar
  140. 140.
    Wenzhong Q, Jincai S, Yang Q (2004) Active control of vibration using a fuzzy control method. J Sound Vib 275(3–5):917–930. doi:  10.1016/S0022-460X(03)00795-8, Google Scholar
  141. 141.
    Williams E, Rigby S, Sproston J, Stanway R (1993) Electrorheological fluids applied to an automotive engine mount. J Non-Newtononian Fluid Mech 47:221–238. doi:  10.1016/0377-0257(93)80052-D, Google Scholar
  142. 142.
    Wills A, Bates D, Fleming A, Ninness B, Moheimani R (2005) Application of MPC to an active structure using sampling rates up to 25 kHz. In: 44th IEEE conference on decision and control 2005 and 2005 European control conference. CDC-ECC ’05, pp 3176–3181. doi: 10.1109/CDC.2005.1582650
  143. 143.
    Wills AG, Bates D, Fleming AJ, Ninness B, Moheimani SOR (2008) Model predictive control applied to constraint handling in active noise and vibration control. IEEE Trans Control Syst Technol 16(1):3–12CrossRefGoogle Scholar
  144. 144.
    Wilson DG, Robinett RD, Parker GG, Starr GP (2002) Augmented sliding mode control for flexible link manipulators. J Intell Rob Syst 34:415–430. doi: 10.1023/A:1019635709331 Google Scholar
  145. 145.
    World Nuclear News (2011) Massive earthquake hits Japan., Retrieved 21 June 2011
  146. 146.
    Yamashita K (2009) Efforts toward enhancing seismic safety at Kashiwazaki Kariwa nuclear power station. E-J Adv Maint 1(3):GA7.
  147. 147.
    Yan G, Sun B, Lü Y (2007) Semi-active model predictive control for 3rd generation benchmark problem using smart dampers. Earthq Eng Eng Vib 6:307–315. doi: 10.1007/s11803-007-0645-2
  148. 148.
    Yang Y, Jin Z, Soh CK (2005) Integrated optimal design of vibration control system for smart beams using genetic algorithms. J Sound Vib 282(3–5):1293–1307. doi: 10.1016/j.jsv.2004.03.048,
  149. 149.
    Yau J (2009) Vibration control of maglev vehicles traveling over a flexible guideway. J Sound Vib 321(1–2):184–200. doi: 10.1016/j.jsv.2008.09.030, Google Scholar
  150. 150.
    Yildirim S (2004) Vibration control of suspension systems using a proposed neural network. J Sound Vib 277(4–5):1059–1069. doi: 10.1016/j.jsv.2003.09.057, Google Scholar
  151. 151.
    Yim W (1996) Modified nonlinear predictive control of elastic manipulators. In: Proceedings of the 1996 IEEE international conference on robotics and automation, vol 3, pp 2097–2102 (Special Issue: Inverse Problems). doi: 10.1109/ROBOT.1996.506180
  152. 152.
    Zapateiro M, Luo N, Karimi H, Vehí J (2009) Vibration control of a class of semiactive suspension system using neural network and backstepping techniques. Mech Syst Sig Process 23(6):1946–1953. doi: 10.1016/j.ymssp.2008.10.003,
  153. 153.
    Zhang CL, Mei DQ, Chen ZC (2002) Active vibration isolation of a micro-manufacturing platform based on a neural network. J Mater Process Technol 129(1–3):634–639. doi: 10.1016/S0924-0136(02)00671-4, Google Scholar
  154. 154.
    Zhang QZ, Gan WS (2004) A model predictive algorithm for active noise control with online secondary path modelling. J Sound Vib 270(4–5):1056–1066. doi:  10.1016/S0022-460X(03)00516-9,
  155. 155.
    Zhou Y, Steinbuch M, Kostic D (2002) Estimator-based sliding mode control of an optical disc drive under shock and vibration. In: Proceedings of the 2002 international conference on control applications, vol 2, pp 631–636. doi: 10.1109/CCA.2002.1038673
  156. 156.
    Zhu C (2005) A disk-type magneto-rheological fluid damper for rotor system vibration control. J Sound Vib 283(3–5):1051–1069. doi: 10.1016/j.jsv.2004.06.031, Google Scholar
  157. 157.
    Zmeu K, Shipitko E (2005) Predictive controller design with offline model learning for flexible beam control. In: Proceedings of the 2005 international conference on physics and control, pp 345–350. doi: 10.1109/PHYCON.2005.1514005

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Gergely Takács
    • 1
  • Boris Rohal’-Ilkiv
    • 1
  1. 1.Faculty of Mechanical Engineering, Institute of Automation, Measurement and Applied InformaticsSlovak University of Technology in BratislavaBratislava 1Slovakia

Personalised recommendations