Advertisement

Efficient MPC Algorithms

  • Gergely Takács
  • Boris Rohal’-Ilkiv
Chapter

Abstract

Computing the control input for constrained model predictive control (MPC) is a complex and time-consuming process. The constrained problem formulation does not allow the control law to be expressed as a closed equation; instead, a numerical optimization problem has to be performed online at each sampling period. The use of formulations with a priori stability guarantees further increase the complexity of the optimization task. It is a logical requirement for every control law, that the computation time of the control moves must be strictly shorter than the sampling period. Due to the computational demands of the MPC strategy, its implementations have been mostly applied to processes with slow dynamics. The application of stabilized constrained MPC to plants with fast dynamics, such as active vibration control (AVC), is a challenge even with up to date computing platforms. To allow the implementation of stabilized MPC on high sampling rate systems, this chapter reviews the theoretical foundation of some of the existing formulations that may considerably cut back on computational loads. The core of the chapter is devoted to a method, which sacrifices the optimality of the MPC process in order to create a simple and computationally very efficient MPC strategy. This method referred to as Newton–Raphson’s MPC (NRMPC) is based on a pre-stabilized, augmented state-space formulation with ellipsoidal target sets, eventually leading to an online algorithm only requiring the computation of a polynomial root. Instead of sacrificing optimality, another major line of efficient MPC formulation uses multi-parametric programming to transfer the online computational load into the offline regime (MPMPC). In addition to reviewing the theoretical essentials of this explicit MPC approach, other efficient MPC methods are briefly revised as well.

Keywords

Model Predictive Control Prediction Horizon Perturbation Vector Warm Starting Model Predictive Control Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Agachi PS, Nagy Z, Cristea MV, Imre-Lucaci A (2006) Model based control: case studies in process engineering, 1st edn. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  2. 2.
    Antwerp JGV, Braatz RD (2000) Model predictive control of large scale processes. J Process Control 10(1):1–8. doi: 10.1016/S0959-1524(99)00050-5, http://www.sciencedirect.com/science/article/B6V4N-3XFKHC8-1/2/18dea51e69b5a1869ec7b653f1615d9c Google Scholar
  3. 3.
    Arnold E, Neupert J, Sawodny O, Schneider K (2007) Trajectory tracking for boom cranes based on nonlinear control and optimal trajectory generation. In: IEEE international conference on control applications: CCA 2007, pp 1444–1449. doi:  10.1109/CCA.2007.4389439
  4. 4.
    Bemporad A, Chisci L, Mosca E (1994) On the stabilizing property of the zero terminal state receding horizon regulation. Automatica 30(12):2013–2015MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bemporad A, Bozinis NA, Dua V, Morari M, Pistikopoulos EN (2000) Model predictive control: a multi-parametric programming approach. In: Pierucci S (ed) European symposium on computer aided process engineering-10, Computer aided chemical engineering, vol 8. Elsevier, pp 301–306. doi: 10.1016/S1570-7946(00)80052-8, http://www.sciencedirect.com/science/article/B8G5G-4NK5JX8-1V/2/76240158054cdb0fb1454f6e0eaa5dfe
  6. 6.
    Bemporad A, Morrari M, Dua V, Pistikopoulos EN (2000) The explicit solution of model predictive control via multiparametric quadratic programming. In: Proceedings of the American control conference, Chicago, pp 872–876Google Scholar
  7. 7.
    Bemporad A, Bernardini D, Cuzzola FA, Spinelli A (2010) Optimization-based automatic flatness control in cold tandem rolling. J Process Control 20(4):396–407. doi: 10.1016/j.jprocont.2010.02.003, http://www.sciencedirect.com/science/article/B6V4N-4YH9YDM-1/2/d0e76c0bfed87a92f529fcf8061a96de Google Scholar
  8. 8.
    Boyd S, Vandenberghe L (2004) Convex Optimization. Cambridge University Press, CambridgeGoogle Scholar
  9. 9.
    Boyd S, Ghaoui LE, Feron E, Balakrishnan V (1994) Linear matrix inequalities in system and control theory: studies in applied mathematics. SIAM, PhiladelphiaGoogle Scholar
  10. 10.
    Camacho EF, Bordons C (1995) Model predictive control in the process industry, Advances in industrial control, vol 104. Springer, LondonCrossRefGoogle Scholar
  11. 11.
    Cannon M (2005) Model predictive control, lecture notes, Michaelmas Term 2005 (4 lectures). Course code 4ME44. University of Oxford, OxfordGoogle Scholar
  12. 12.
    Cannon M, Kouvaritakis B (1997) Ellipsoidal bounding in stable predictive control. In: Proceedings of the 5th IEEE Mediterranean conference on control and systemsGoogle Scholar
  13. 13.
    Cannon M, Kouvaritakis B (1998) Fast suboptimal predictive control with guaranteed stability. Syst Control Lett 35(1):19 – 29. doi:  10.1016/S0167-6911(98)00018-8, http://www.sciencedirect.com/science/article/B6V4X-3VCV2K5-T/2/e26cc7439ebfb7bebdbba41a20d48a16
  14. 14.
    Cannon M, Kouvaritakis B (2005) Optimizing prediction dynamics for robust MPC. IEEE Trans Autom Cont 50(11):1892–1897. doi: 10.1109/TAC.2005.858679 MathSciNetCrossRefGoogle Scholar
  15. 15.
    Cannon M, Liao W, Kouvaritakis B (2006) Efficient MPC optimization using Pontryagin’s minimum principle. In: IEEE conference on decision and control, San Diego, pp 5459–5464Google Scholar
  16. 16.
    Cannon M, Liao W, Kouvaritakis B (2007) Efficient MPC optimization using Pontryagin’s minimum principle. Int J Robust Nonlinear Control 18(8):831–844MathSciNetCrossRefGoogle Scholar
  17. 17.
    Chen CC, Shaw L (1982) On receding horizon feedback control. Automatica 18:349–352MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Christophersen FJ, Kvasnica M, Jones CN, Morari M (2007) Efficient evaluation of piecewise control laws defined over a large number of polyhedra. In: Tzafestas SG, Tzafestas PA (eds) Proceedings of the European control conference ECC ’07, pp 2360–2367Google Scholar
  19. 19.
    Cychowski M, O’Mahony T (2005) Efficient approximate robust mpc based on quad-tree partitioning. In: Control applications: CCA 2005: proceedings of 2005 IEEE conference on, p 239. doi:  10.1109/CCA.2005.1507131
  20. 20.
    Cychowski M, Ding B, O’Mahony T (2005) An orthogonal partitioning approach to simplify robust model predictive control. In: Intelligent control, 2005: proceedings of the 2005 IEEE international symposium on, Mediterranean conference on control and automation, p 877. doi:  10.1109/.2005.1467130
  21. 21.
    Dua P, Kouramas K, Dua V, Pistikopoulos E (2008) MPC on a chip—recent advances on the application of multi-parametric model-based control. Comput Chem Eng 32(4–5):754–765. doi:  10.1016/j.compchemeng.2007.03.008, http://www.sciencedirect.com/science/article/B6TFT-4N98825-1/2/d6fda698cfbc90a5034664731405dced (festschrift devoted to Rex Reklaitis on his 65th birthday)
  22. 22.
    Ferreau HJ (2006) An online active set strategy for fast solution of parametric quadratic programs with applications to predictive engine control. Master’s thesis, University of HeidelbergGoogle Scholar
  23. 23.
    Ferreau HJ (2011) qpOASES—online active set strategy. Leuven. http://www.qpoases.org
  24. 24.
    Ferreau HJ (2011) qpOASES user’s manual. Optimization in Engineering Center (OPTEC) and Department of Electrical Engineering, LeuvenGoogle Scholar
  25. 25.
    Ferreau HJ, Ortner P, Langthaler P, del Re L, Diehl M (2007) Predictive control of a real-world diesel engine using an extended online active set strategy. Annu Rev Cont 31(2):293–301. doi: 10.1016/j.arcontrol.2007.09.001, http://www.sciencedirect.com/science/article/B6V0H-4R05C2B-2/2/23db757b09f804365ba12dc1844992d9
  26. 26.
    Ferreau HJ, Bock HG, Diehl M (2008) An online active set strategy to overcome the limitations of explicit MPC. IEEE Trans Autom Cont 18(8):816–830MathSciNetCrossRefGoogle Scholar
  27. 27.
    Fletcher R (2000) Practical methods of optimization. Wiley, New YorkGoogle Scholar
  28. 28.
    García-Nieto S, Martínez M, Blasco X, Sanchis J (2008) Nonlinear predictive control based on local model networks for air management in diesel engines. Control Eng Pract 16(12):1399–1413. doi:  10.1016/j.conengprac.2008.03.010, http://www.sciencedirect.com/science/article/B6V2H-4SJR2B9-1/2/074f553c85e17d19dbc9885761d63047
  29. 29.
    Geyer T, Torrisi FD, Morari M (2008) Optimal complexity reduction of polyhedral piecewise affine systems. Automatica 44(7):1728 – 1740. doi: 10.1016/j.automatica.2007.11.027, http://www.sciencedirect.com/science/article/pii/S0005109807004906 Google Scholar
  30. 30.
    Gilbert EG, Tan KT (1991) Linear systems with state and control constraints: the theory and application of maximal output admissible sets. IEEE Trans Autom Cont 36(9):1008–1020MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Grancharova A, Johansen TA, Kocijan J (2004) Explicit model predictive control of gas-liquid separation plant via orthogonal search tree partitioning. Comput Chem Eng 28(12):2481–2491. doi: 10.1016/j.compchemeng.2004.06.010, http://www.sciencedirect.com/science/article/B6TFT-4CYWJH6-1/2/017c01ad65b6d18bf88e42ce347091d0
  32. 32.
    Grieder P, Wan Z, Kothare M, Morari M (2004) Two level model predictive control for the maximum control invariant set. In: American control conference, BostonGoogle Scholar
  33. 33.
    Grieder P, Kvasnica M, Baotic M, Morari M (2005) Stabilizing low complexity feedback control of constrained piecewise affine systems. Automatica 41(10):1683–1694MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Hegrenæs Ø, Gravdahl JT, Tøndel P (2005) Spacecraft attitude control using explicit model predictive control. Automatica 41(12):2107–2114. doi:  10.1016/j.automatica.2005.06.015, http://www.sciencedirect.com/science/article/B6V21-4H99JGM-2/2/d96885a9c443d0f2cebee658396ae01b Google Scholar
  35. 35.
    Imsland L, Rossiter JA (2005) Time varying terminal control. In: 16th IFAC world congress in Prague, Prague, p TP/19Google Scholar
  36. 36.
    Imsland L, Bar N, Foss BA (2005) More efficient predictive control. Automatica 41(8):1395–1403. doi: 10.1016/j.automatica.2005.03.010, http://www.sciencedirect.com/science/article/B6V21-4G7NT35-1/2/52a9590bfe1ccc2a9561165c3fbdf872 Google Scholar
  37. 37.
    Johansen T, Grancharova A (2003) Approximate explicit constrained linear model predictive control via orthogonal search tree. IEEE Trans Autom Cont 48(5):810–815. doi: 10.1109/TAC.2003.811259 Google Scholar
  38. 38.
    Johansen TA, Jackson W, Schreiber R, Tøndel P (2007) Hardware synthesis of explicit model predictive controllers. IEEE Trans Control Syst Technol 15(1):191–197CrossRefGoogle Scholar
  39. 39.
    Johansen TA, Fuglseth TP, Tøndel P, Fossen TI (2008) Optimal constrained control allocation in marine surface vessels with rudders. Control Eng Pract 16(4):457–464. doi: 10.1016/j.conengprac.2007.01.012, http://www.sciencedirect.com/science/article/B6V2H-4NBR3R5-1/2/2b78779171ca8833add555fffbb7b731 (Special section on manoeuvering and control of marine craft)Google Scholar
  40. 40.
    Jones C, Grieder P, Rakovic S (2005) A logarithmic-time solution to the point location problem for closed-form linear MPC. In: IFAC world congress, PragueGoogle Scholar
  41. 41.
    Karas A (2002) Stabilizujúce prediktívne riadenie systémov s obmedzeniami. PhD thesis, Slovak University of Technology in Bratislava, Bratislava, (Stabilizing predictive control of systems with constraints—in Slovak language)Google Scholar
  42. 42.
    Karas A, Rohal’-Ilkiv B, Belavý C (2007) Praktické aspekty prediktívneho riadenia, 1st edn. Slovak University of Technology in Bratislava/Slovenská E-Akadémia, n.o., Bratislava (Practical aspects of predictive control) in Slovak languageGoogle Scholar
  43. 43.
    Keerthi SS, Gilbert EG (1988) Optimal, infinite horizon feedback law for a~general class of constrained discrete time systems: stability and moving-horizon approximations. J Optim Theory Appl 57:265–293MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Kouvaritakis B, Rossiter JA, Chang AOT (1992) Stable generalised predictive control: an algorithm with guaranteed stability. IEE Proc Part D 139(4):349–362zbMATHGoogle Scholar
  45. 45.
    Kouvaritakis B, Rossiter J, Schuurmans J (2000) Efficient robust predictive control. IEEE Trans Autom Cont 45(8):1545–1549. doi: 10.1109/9.871769 MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Kouvaritakis B, Cannon M, Rossiter J (2002) Who needs QP for linear MPC anyway? Automatica 38:879–88. doi: 10.1016/S0005-1098(01)00263-1, http://www.sciencedirect.com/science/article/pii/S0005109801002631 MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Kouvaritakis B, Li S, Cannon M (2010) A line search improvement of efficient MPC. Automatica 46(11):1920–1924. doi: 10.1016/j.automatica.2010.07.003, http://www.sciencedirect.com/science/article/B6V21-50NH0BX-3/2/0b4491d922a7d04d1b0315edae0e8944 Google Scholar
  48. 48.
    Kvasnica M (2009) Real-time model predictive control via multi-parametric programming: theory and tools, 1st edn. VDM, SaarbrückenGoogle Scholar
  49. 49.
    Kvasnica M, Fikar M (2010) Performance-lossless complexity reduction in explicit mpc. In: Proceedings of the 49th IEEE conference on decision and control 2010, pp 5270–5275Google Scholar
  50. 50.
    Kvasnica M, Christophersen FJ, Herceg M, Fikar M (2008) Polynomial approximation of closed-form MPC for piecewise affine systems. In: Proceedings of the 17th world congress of the international federation of automatic control, Seoul, pp 3877–3882Google Scholar
  51. 51.
    Kvasnica M, Herceg M, Čirka L’, Fikar M (2009) Robust adaptive minimum-time control of piecewise affine systems. In: Proceedings of the 48th IEEE conference on decision and control, pp 2454–2459Google Scholar
  52. 52.
    Kvasnica M, Herceg M, Čirka L’, Fikar M (2009) Time optimal control of fuzzy systems: a parametric programming approach. In: Proceedings of the 28th IASTED conference on modelling, identification and control, pp 640–805Google Scholar
  53. 53.
    Kvasnica M, Herceg M, Čirka L’, Fikar M (2009) Time-optimal control of Takagi–Sugeno fuzzy systems. In: Proceedings of the 10th European control conference, Budapest, pp 916–921Google Scholar
  54. 54.
    Kvasnica M, Christophersen FJ, Herceg M, Fikar M (2010) Polynomial approximation of closed-form MPC for piecewise affine systems. In: Selected topics in modelling and control, vol 6, Slovak University of Technology Press, pp 105–112Google Scholar
  55. 55.
    Kvasnica M, Rauová I, Fikar M (2010) Automatic code generation for real-time implementation of model predictive control. In: Proceedings of the 2010 IEEE international symposium on computer-aided control system design, Yokohama, pp 993–998Google Scholar
  56. 56.
    Kvasnica M, Fikar M, Čirka L’, Herceg M (2011) Complexity reduction in explicit model predictive control. In: Selected topics on constrained and nonlinear control: STU Bratislava–NTNU Trondheim, pp 241–288Google Scholar
  57. 57.
    Kvasnica M, Herceg M, Čirka L’, Fikar M (2011) Explicit minimum-time controllers for fuzzy systems. In: Selected topics on constrained and nonlinear control. Preprints, STU Bratislava–NTNU Trondheim, pp 287–292Google Scholar
  58. 58.
    Kvasnica M, Herceg M, Čirka L’, Fikar M (2011) Robust explicit time-optimal control of PWA systems with parametric uncertainties. In: Selected topics on constrained and nonlinear control. Preprints, STU Bratislava–NTNU Trondheim, pp 295–300Google Scholar
  59. 59.
    Kvasnica M, Rauová I, Fikar M (2011) Real-time implementation of model predictive control using automatic code generation. In: Selected topics on constrained and nonlinear control. Preprints, STU Bratislava–NTNU Trondheim, pp 311–316Google Scholar
  60. 60.
    Kvasnica M, Rauová I, Fikar M (2011) Separation functions used in simplification of explicit MPC feedback laws. In: Selected topics on constrained and nonlinear control. Preprints, STU Bratislava–NTNU Trondheim, pp 303–308. http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1067
  61. 61.
    Maciejowski JM (2000) Predictive control with constraints, 1st edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  62. 62.
    Mayne DQ, Michalska H (1990) Receding horizon control of non-linear systems. IEEE Trans Autom Cont 35(5):814–824MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Mayne DQ, Rawlings JB, Rao CV, Scokaert POM (2000) Constrained model predictive control: stability and optimality. Automatica 36(6):789–814MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Michalska H, Mayne DQ (1993) Robust receding horizon control of constrained nonlinear systems. IEEE Trans Autom Cont 38(11):1623–1633MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Morger A (2010) Synthesis, design and control of a tendon-driven robot platform for vestibular stimulation during sleep. Master’s thesis, ETH ZurichGoogle Scholar
  66. 66.
    Mosca E (1994) Optimal, Predictive and adaptive control, 1st edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  67. 67.
    Nesterov Y, Nemirovskii A (1994) Interior-point polynomial methods in convex programming, Studies in applied mathematics, vol 13. SIAM, PhiladelphiaCrossRefGoogle Scholar
  68. 68.
    Ohtsuka T (2004) A continuation/GMRES method for fast computation of nonlinear receding horizon control. Automatica 40(4):563–574. doi: 10.1016/j.automatica.2003.11.005, http://www.sciencedirect.com/science/article/pii/S0005109803003637 Google Scholar
  69. 69.
    Panos C, Kouramas KI, Georgiadis MC, Brandon N, Pistikopoulos EN (2010) Modelling and explicit MPC of PEM fuel cell systems. In: Pierucci S, Ferraris GB (eds) 20th European symposium on computer aided process engineering, Elsevier, vol 28, pp 517–522. doi: 10.1016/S1570-7946(10)28087-2, http://www.sciencedirect.com/science/article/B8G5G-505XT0T-36/2/4e263f053c6a882ca5aaece78b07e431
  70. 70.
    Percival M, Wang Y, Grosman B, Dassau E, Zisser H, Jovanovic L, Doyle FJ III (2011) Development of a multi-parametric model predictive control algorithm for insulin delivery in type 1 diabetes mellitus using clinical parameters. J Process Control 21(3):391–404. doi: 10.1016/j.jprocont.2010.10.003, http://www.sciencedirect.com/science/article/B6V4N-51BP6G6-2/2/33f4ab368180bad868c94b831fb10c17
  71. 71.
    Pistikopoulos EN, Georgiadis MC, Dua V (eds) (2007) Multi-parametric model-based control, vol 2, 1st edn. Wiley-VCH, WeinheimGoogle Scholar
  72. 72.
    Pistikopoulos EN, Georgiadis MC, Dua V (eds) (2007) Multi-parametric programming, vol 1, 1st edn. Wiley-VCH, WeinheimGoogle Scholar
  73. 73.
    Rawlings JB, Muske KR (1993) The stability of constrained receding horizon control. IEEE Trans Autom Cont 38(10):1512–1516MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Rossiter JA (2003) Model-based predictive control: a practical approach, 1st edn. CRC Press, Boca RatonGoogle Scholar
  75. 75.
    Rossiter JA, Kouvaritakis B (1993) Constrained stable generalized predictive control. IEE Proc Part D 140(4):243–254zbMATHGoogle Scholar
  76. 76.
    Rossiter JA, Kouvaritakis B, Rice MJ (1998) A numerically robust state-space approach to stable-predictive control strategies. Automatica 34(1):65–73MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    Scokaert POM, Rawlings JB (1996) Infinite horizon linear quadratic control with constraints. In: Proceedings of IFAC’96 world congress, San Francisco, vol 7a-041, pp 109–114Google Scholar
  78. 78.
    Scokaert POM, Rawlings JB (1998) Constrained linear quadratic regulation. IEEE Trans Autom Cont 43(8):1163–1169MathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    Sznaier M, Damborg MJ (1987) Suboptimal control of linear systems with state and control inequality constraints. In: Proceedings of the 26th IEEE conference on decision and control, pp 761–762Google Scholar
  80. 80.
    Takács G (2009) Efficient model predictive control applied on active vibration attenuation. PhD thesis, Institute of Autmation, Measurement and Applied Informatics, Faculty of Mechanical Engineering, Slovak University of Technology in Bratislava, submitted in fulfillment of the requirement for the degree of Doctor of Philosophy, pp 257Google Scholar
  81. 81.
    Takács G, Rohal’-Ilkiv B (2009) Implementation of the Newton–Raphson MPC algorithm in active vibration control applications. In: Mace BR, Ferguson NS, Rustighi E (eds) Proceedings of the 3rd international conference on noise and vibration: emerging methods, OxfordGoogle Scholar
  82. 82.
    Takács G, Rohal’-Ilkiv B (2009) MPC with guaranteed stability and constraint feasibility on flexible vibrating active structures: a comparative study. In: Hu H (ed) Proceedings of The eleventh IASTED international conference on control and applications, CambridgeGoogle Scholar
  83. 83.
    Takács G, Rohal’-Ilkiv B (2009) Newton–Raphson based efficient model predictive control applied on active vibrating structures. In: Proceedings of the European control conference, BudapestGoogle Scholar
  84. 84.
    Takács G, Rohal’-Ilkiv B (2009) Newton–Raphson MPC controlled active vibration attenuation. In: Hangos KM (ed) Proceedings of the 28th IASTED international conference on modeling, identification and control, InnsbruckGoogle Scholar
  85. 85.
    Tøndel P, Johansen TA, Bemporad A (2003) Evaluation of piecewise affine control via binary search tree. Automatica 39(5):945–950. doi: 10.1016/S0005-1098(02)00308-4, http://www.sciencedirect.com/science/article/pii/S0005109802003084 Google Scholar
  86. 86.
    Van den Broeck L, Diehl M, Swevers J (2009) Time optimal MPC for mechatronic applications. In: Proceedings of the 48th IEEE conference on decision and control, Shanghai, pp 8040–8045Google Scholar
  87. 87.
    Wang Y, Boyd S (2008) Fast model predictive control using online optimization. In: Proceedings of the 17th world congress the international federation of automatic control, Seoul, pp 6974–6979Google Scholar
  88. 88.
    Wang Y, Boyd S (2010) Fast model predictive control using online optimization. IEEE Trans Control Syst Technol 18(2):267–278CrossRefGoogle Scholar
  89. 89.
    Wills A, Bates D, Fleming A, Ninness B, Moheimani R (2005) Application of MPC to an active structure using sampling rates up to 25 kHz. In: 44th IEEE conference on decision and control, 2005 and 2005 European control conference. CDC-ECC ’05, pp 3176–3181. doi: 10.1109/CDC.2005.1582650
  90. 90.
    Wills AG, Bates D, Fleming AJ, Ninness B, Moheimani SOR (2008) Model predictive control applied to constraint handling in active noise and vibration control. IEEE Trans Control Syst Technol 16(1):3–12CrossRefGoogle Scholar
  91. 91.
    Zhou K, Doyle J, Glover K (1994) Robust optimal control. Prentice-Hall, Englewood CliffsGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Gergely Takács
    • 1
  • Boris Rohal’-Ilkiv
    • 1
  1. 1.Faculty of Mechanical Engineering, Institute of Automation, Measurement and Applied InformaticsSlovak University of Technology in BratislavaBratislava 1Slovakia

Personalised recommendations