Laboratory Demonstration Hardware for AVC

  • Gergely Takács
  • Boris Rohal’-Ilkiv


A laboratory demonstration hardware for the verification of model predictive control (MPC) algorithms in active vibration control (AVC) is introduced in detail. The laboratory device featured in the experiments comparing model predictive vibration control algorithms is a simple clamped cantilever beam with piezoelectric actuation. Despite of its elementary physical construction such a lightly damped vibrating device models the dynamics of a class of real-life applications, such as helicopter rotor beams, wing surfaces, antenna masts, manipulators and others. After a brief summary of this laboratory device, its experimental identification procedure is discussed. Some of the characteristic properties of the device are introduced as well, such as actuator linearity and noise tolerance. As finite element modeling (FEM) of vibrating structures is a valuable tool for the engineering practitioner, some of the results of the preliminary FEM analyses performed on the device are also presented. The chapter is closed with a section on hardware component details, which can be an aid to those who are unfamiliar with the components of such AVC demonstrators and are planning to build one.


Model Predictive Control Piezoelectric Actuator Piezoelectric Transducer Capacitive Sensor Active Vibration Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Agrawal BN, Bang H (1996) Adaptive structures for large precision antennas. Acta Astronautica 38(3):175–183. doi: 10.1016/0094-5765(96)00062-8, Google Scholar
  2. 2.
    Alam M, Tokhi M (2008) Designing feedforward command shapers with multi-objective genetic optimisation for vibration control of a single-link flexible manipulator. Eng Appl Artif Intell 21(2):229–246. doi: 10.1016/j.engappai.2007.04.008,
  3. 3.
    Allen M, Bernelli-Zazzera F, Scattolini R (2000) Sliding mode control of a large flexible space structure. Control Eng Pract 8(8):861–871. doi: 10.1016/S0967-0661(00)00004-6, Google Scholar
  4. 4.
    Amer Y, Bauomy H (2009) Vibration reduction in a 2DOF twin-tail system to parametric excitations. Commun Nonlinear Sci Numer Simul 14(2):560–573. doi: 10.1016/j.cnsns.2007.10.005, Google Scholar
  5. 5.
    Bae JS, Kwak MK, Inman DJ (2005) Vibration suppression of a cantilever beam using eddy current damper. J Sound Vib 284(3–5):805–824. doi: 10.1016/j.jsv.2004.07.031, Google Scholar
  6. 6.
    Balas M (1978) Feedback control of flexible systems. IEEE Trans Autom Control 23(4):673–679. doi:10.1109/TAC.1978.1101798zbMATHCrossRefGoogle Scholar
  7. 7.
    Barrault G, Halim D, Hansen C (2007) High frequency spatial vibration control using method. Mech Syst Sig Process 21(4):1541–1560. doi:  10.1016/j.ymssp.2006.08.013,
  8. 8.
    Barrault G, Halim D, Hansen C, Lenzi A (2008) High frequency spatial vibration control for complex structures. Appl Acoust 69(11):933–944. doi: 10.1016/j.apacoust.2007.08.004, Google Scholar
  9. 9.
    Bittanti S, Cuzzola FA (2002) Periodic active control of vibrations in helicopters: a gain-scheduled multi-objective approach. Control Eng Pract 10(10):1043–1057. doi: 10.1016/S0967-0661(02)00052-7,
  10. 10.
    Boeing Company (2004) Boeing-led team successfully tests SMART materials helicopter rotor. Online,
  11. 11.
    Bohn C, Cortabarria A, Härtel V, Kowalczyk K (2004) Active control of engine-induced vibrations in automotive vehicles using disturbance observer gain scheduling. Control Eng Pract 12(8):1029–1039. doi: 10.1016/j.conengprac.2003.09.008,, in Special Section on Emerging Technologies for Active Noise and Vibration Control Systems
  12. 12.
    Boscariol P, Gasparetto A, Zanotto V (2010) Model predictive control of a flexible links mechanism. J Intell Rob Syst 58:125–147. doi: 10.1007/s10846-009-9347-5 Google Scholar
  13. 13.
    Brüel & Kjær Inc (2008) Mini-shaker—type 4810. Product data sheet. Brüel & Kjær, Sound & Vibration Measurement A/S, Nærum.
  14. 14.
    Brüel & Kjær Inc (2008) Operational amplifier—type 2718. Product data sheet. Brüel & Kjær, Sound & Vibration Measurement A/S, Nærum.
  15. 15.
    Cavallo A, De Maria G, Leccia E, Setola R (1997) A robust controller for active vibration control of flexible systems. In: Proceedings of the 36th IEEE conference on decision and control, vol 2. pp 1355–1360. doi: 10.1109/CDC.1997.657648
  16. 16.
    Chiang RY, Safonov MG (1991) Design of \({\fancyscript{H}}_\infty\) controller for a lightly damped system using a bilinear pole shifting transform. In: American control conference, pp 1927–1928Google Scholar
  17. 17.
    Choi SB, Hong SR, Sung KG, Sohn JW (2008) Optimal control of structural vibrations using a mixed-mode magnetorheological fluid mount. Int J Mech Sci 50(3):559–568. doi: 10.1016/j.ijmecsci.2007.08.001, Google Scholar
  18. 18.
    Chu CL, Wu BS, Lin YH (2006) Active vibration control of a flexible beam mounted on an elastic base. Finite Elem Anal Des 43(1):59–67. doi: 10.1016/j.finel.2006.07.001,
  19. 19.
    Cigada A, Mancosu F, Manzoni S, Zappa E (2010) Laser-triangulation device for in-line measurement of road texture at medium and high speed. Mech Syst Sig Process 24(7):2225–2234. doi: 10.1016/j.ymssp.2010.05.002,, special Issue: ISMA 2010
  20. 20.
    Cole MO, Wongratanaphisan T, Pongvuthithum R, Fakkaew W (2008) Controller design for flexible structure vibration suppression with robustness to contacts. Automatica 44(11):2876–2883. doi: 10.1016/j.automatica.2008.03.022, Google Scholar
  21. 21.
    Daley S, Johnson FA, Pearson JB, Dixon R (2004) Active vibration control for marine applications. Control Eng Pract 12(4):465–474. doi: 10.1016/S0967-0661(03)00135-7, uKACC Conference Control 2002Google Scholar
  22. 22.
    Dong X, Meng G, Peng J (2006) Vibration control of piezoelectric smart structures based on system identification technique: numerical simulation and study. J Sound Vib 297:680–693MathSciNetCrossRefGoogle Scholar
  23. 23.
    Eissa M, Bauomy H, Amer Y (2007) Active control of an aircraft tail subject to harmonic excitation. Acta Mech Sin 23:45–462.  10.1007/s10409-007-0077-2 Google Scholar
  24. 24.
    El-Badawy AA, Nayfeh AH (2001) Control of a directly excited structural dynamic model of an F-15 tail section. J Franklin Inst 338(2–3):133–147. doi: 10.1016/S0016-0032(00)00075-2,
  25. 25.
    Falconi C, Mantini G, D’Amico A, Wang ZL (2009) Studying piezoelectric nanowires and nanowalls for energy harvesting. Sens Actuators B 139(2):511–519. doi: 10.1016/j.snb.2009.02.071,
  26. 26.
    Friedman J, Khargonekar P (1995) Application of identification in \({\fancyscript{H}}_\infty\) to lightly damped systems: two case studies. IEEE Trans Control Syst Technol 3(3):279–289. doi: 10.1109/87.406975 Google Scholar
  27. 27.
    Fung RF, Liu YT, Wang CC (2005) Dynamic model of an electromagnetic actuator for vibration control of a cantilever beam with a tip mass. J Sound Vib 288(4–5):957–980. doi: 10.1016/j.jsv.2005.01.046,
  28. 28.
    Gani A, Salami M, Khan R (2003) Active vibration control of a beam with piezoelectric patches: real-time implementation with xPC target. In: Proceedings of 2003 IEEE conference on control applications. CCA 2003, vol 1. pp 538–544. doi: 10.1109/CCA.2003.1223494
  29. 29.
    Gatti G, Brennan MJ, Gardonio P (2007) Active damping of a beam using a physically collocated accelerometer and piezoelectric patch actuator. J Sound Vib 303(3–5):798–813. doi: 10.1016/j.jsv.2007.02.006,
  30. 30.
    Gaudenzi P, Carbonaro R, Barboni R (1997) Vibration control of an active laminated beam. Compos Struct 38(1–4):413–420. doi: 10.1016/S0263-8223(97)00076-7, Ninth International Conference on Composite Structures
  31. 31.
    Gaudenzi P, Carbonaro R, Benzi E (2000) Control of beam vibrations by means of piezoelectric devices: theory and experiments. Compos Struct 50:373–379CrossRefGoogle Scholar
  32. 32.
    Gaudiller L, Hagopian JD (1996) Active control of flexible structures using a minimum number of components. J Sound Vib 193(3):713–741. doi: 10.1006/jsvi.1996.0310,
  33. 33.
    Gospodaric B, Voncina D, Bucar B (2007) Active electromagnetic damping of laterally vibrating ferromagnetic cantilever beam. Mechatronics 17(6):291–298. doi: 10.1016/j.mechatronics.2007.04.002, Google Scholar
  34. 34.
    Halim D, Moheimani S (2003) An optimization approach to optimal placement of collocated piezoelectric actuators and sensors on thin plate. Mechatronics 13:27–47CrossRefGoogle Scholar
  35. 35.
    Hassan M, Dubay R, Li C, Wang R (2007) Active vibration control of a flexible one-link manipulator using a multivariable predictive controller. Mechatronics 17(1):311–323CrossRefGoogle Scholar
  36. 36.
    Hatch MR (2000) Vibration simulation using MATLAB and ANSYS, 1st edn. Chapman and Hall / CRC, Boca RatonzbMATHCrossRefGoogle Scholar
  37. 37.
    Hellerstein JL, Diao Y, Parekh S, Tilbury DM (2004) Feedback control of computing systems. Wiley / IEEE Press, HobokenCrossRefGoogle Scholar
  38. 38.
    Herrick DC (1980) Study of velocity output vibration suppression controllers with a multiloop root locus. In: 19th IEEE conference on decision and control including the symposium on adaptive processes, vol 19. pp 1088–1090. doi: 10.1109/CDC.1980.271970
  39. 39.
    Hong SR, Choi SB, Han MS (2002) Vibration control of a frame structure using electro-rheological fluid mounts. Int J Mech Sci 44(10):2027–2045. doi: 10.1016/S0020-7403(02)00172-8
  40. 40.
    Hu Q (2009) A composite control scheme for attitude maneuvering and elastic mode stabilization of flexible spacecraft with measurable output feedback. Aerosp Sci Technol 13(2–3):81–91. doi: 10.1016/j.ast.2007.06.007,
  41. 41.
    Hu QL, Wang Z, Gao H (2008) Sliding mode and shaped input vibration control of flexible systems. IEEE Trans Aersp Electron Syst 44(2):503–519. doi:10.1109/TAES.2008.4560203CrossRefGoogle Scholar
  42. 42.
    Huber T (2011) Image showing the scan points on the two bricks. Website,
  43. 43.
    Huber T (2011) Photograph showing the speaker placed in front two bricks and the vibrometer scan head. Website,
  44. 44.
    Huber TM (2011) Measurement of mode shapes of musical instruments using a scanning laser Doppler vibrometer. J Acoust Soc Am 129(4):2615–2615. doi: 10.1121/1.3588688, Google Scholar
  45. 45.
    Huber TM, Mellema DC, Abell B (2009) Selective excitation of microcantilever array using ultrasound radiation force. J Acoust Soc Am 125(4):2635–2635. Google Scholar
  46. 46.
    Hubinský P (2010) Riadenie mechatronických systémov s nízkym tlmením, 1st edn. In: Slovenská technická univerzita v Bratislave, Nakladatel’stvo STU, Control of mechatronic systems with low damping, Slovak language, BratislavaGoogle Scholar
  47. 47.
    Hulkó G, Belavý C, Belanský J, Szuda J, Végh P (1998) Modeling, control and design of distributed parameter systems: with demonstrations in Matlab, 1st edn. Publishing house of Slovak University of Technology, BratislavaGoogle Scholar
  48. 48.
    Hulkó G, Belavý C, Buček P, Ondrejkovič K, Zajíček P (2009) Engineering methods and software support for control of distributed parameter systems. In: ASCC 2009: 7th Asian control conference, pp 1432–1438Google Scholar
  49. 49.
    Hulkó G, Belavý C, Mészáros A, Buček P, Ondrejkovič K, Zajíček P (2009) Engineering methods and software support for modelling and design of discrete-time control of distributed parameter systems. Euro J Control 15(3–4):407–417CrossRefGoogle Scholar
  50. 50.
    Inman DJ (2007) Engineering vibrations, 3rd edn. Pearson International Education (Prentice Hall), Upper Saddle RiverGoogle Scholar
  51. 51.
    John S, Hariri M (2008) Effect of shape memory alloy actuation on the dynamic response of polymeric composite plates. Composites Part A 39(5):769–776. doi:  10.1016/j.compositesa.2008.02.005,
  52. 52.
    Kang B, Mills JK (2005) Vibration control of a planar parallel manipulator using piezoelectric actuators. J Intell Rob Syst 42:51–70. doi: 10.1007/s10846-004-3028-1 Google Scholar
  53. 53.
    Kapucu S, Yıldırım N, Yavuz H, Bayseç S (2008) Suppression of residual vibration of a translating-swinging load by a flexible manipulator. Mechatronics 18(3):121–128. doi: 10.1016/j.mechatronics.2007.10.007, Google Scholar
  54. 54.
    Karl W, Verghese G, Lang J (1994) Control of vibrational systems. IEEE Trans Autom Control 39(1):222–226. doi:10.1109/9.273372MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Kermani MR, Moallem M, Patel RV (2004) Parameter selection and control design for vibration suppression using piezoelectric transducers. Control Eng Pract 12:1005–1015CrossRefGoogle Scholar
  56. 56.
    Keyence Inc (2003) Displacement sensors technical guide. Keyence Inc., OsakaGoogle Scholar
  57. 57.
    Keyence Inc (2004) LK Navigator user’s manual. Keyence Inc., for LK-G Series Setting and Support Software LK-H1W, OsakaGoogle Scholar
  58. 58.
    Keyence Inc (2006) LK-G series user’s manual. Keyence Inc., OsakaGoogle Scholar
  59. 59.
    Kim SM, Wang S, Brennan MJ (2011) Dynamic analysis and optimal design of a passive and an active piezo-electrical dynamic vibration absorber. J Sound Vib 330(4):603–614. doi: 10.1016/j.jsv.2010.09.004,
  60. 60.
    Kursu O, Kruusing A, Pudas M, Rahkonen T (2009) Piezoelectric bimorph charge mode force sensor. Sens Actuat A 153(1):42–49. doi: 10.1016/j.sna.2009.04.026, Google Scholar
  61. 61.
    Kwak MK, Heo S (2007) Active vibration control of smart grid structure by multiinput and multioutput positive position feedback controller. J Sound Vib 304(1–2):230–245. doi: 10.1016/j.jsv.2007.02.021, Google Scholar
  62. 62.
    Lau K, Zhou L, Tao X (2002) Control of natural frequencies of a clamped-clamped composite beam with embedded shape memory alloy wires. Compos Struct 58(1):39–47. doi: 10.1016/S0263-8223(02)00042-9,
  63. 63.
    Lee HK, Chen ST, Lee AC (1996) Optimal control of vibration suppression in flexible systems via dislocated sensor/actuator positioning. J Franklin Inst 333(5):789–802. doi: 10.1016/0016-0032(96)00038-5,
  64. 64.
    Lewis B, Tran H (2007) Real-time implementation of a frequency shaping controller on a cantilever beam. Appl Numer Math 57(5–7): 778–790. doi:  10.1016/j.apnum.2006.07.017, , special Issue for the International Conference on Scientific Computing
  65. 65.
    Li M, Lim TC, Lee JH (2008) Simulation study on active noise control for a 4-T MRI scanner. Magn Reson Imaging 26(3):393–400. doi: 10.1016/j.mri.2007.08.003,
  66. 66.
    Li YY, Cheng L, Li P (2003) Modeling and vibration control of a plate coupled with piezoelectric material. Compos Struct 62(2):155–162. doi: 10.1016/S0263-8223(03)00110-7, Google Scholar
  67. 67.
    Lin J, Liu WZ (2006) Experimental evaluation of a piezoelectric vibration absorber using a simplified fuzzy controller in a cantilever beam. J Sound Vib 296(3):567–582. doi: 10.1016/j.jsv.2006.01.066
  68. 68.
    Lin J, Nien MH (2005) Adaptive control of a composite cantilever beam with piezoelectric damping-modal actuators/sensors. Compos Struct 70:170–176CrossRefGoogle Scholar
  69. 69.
    Lin LC, Lee TE (1997) Integrated PID-type learning and fuzzy control for flexible-joint manipulators. J Intell Rob Syst 18:47–66.  http://10.1023/A:1007942528058,10.1023/A:1007942528058 Google Scholar
  70. 70.
    Ljung L (1999) System identification: theory for the user, 2nd edn. PTR Prentice Hall, Upper Saddle RiverGoogle Scholar
  71. 71.
    Lu H, Meng G (2006) An experimental and analytical investigation of the dynamic characteristics of a flexible sandwich plate filled with electrorheological fluid. Int J Adv Manuf Technol 28:1049–1055  10.1007/s00170-004-2433-8 Google Scholar
  72. 72.
    Luo T, Hu Y (2002) Vibration suppression techniques for optical inter-satellite communications. In: IEEE 2002 international conference on communications, circuits and systems and west sino expositions, vol 1. pp 585–589. doi: 10.1109/ICCCAS.2002.1180687
  73. 73.
    Mahmoodi S, Daqaq MF, Jalili N (2009) On the nonlinear-flexural response of piezoelectrically driven microcantilever sensors. Sens Actuators A 153(2):171–179. doi: 10.1016/j.sna.2009.05.003,
  74. 74.
    Mahmoodi SN, Craft MJ, Southward SC, Ahmadian M (2011) Active vibration control using optimized modified acceleration feedback with adaptive line enhancer for frequency tracking. J Sound Vib 330(7):1300–1311. doi: 10.1016/j.jsv.2010.10.013, Google Scholar
  75. 75.
    Malgaca L (2010) Integration of active vibration control methods with finite element models of smart laminated composite structures. Compos Struct 92(7):1651–1663. doi: 10.1016/j.compstruct.2009.11.032,
  76. 76.
    Mehrabian AR, Yousefi-Koma A (2011) A novel technique for optimal placement of piezoelectric actuators on smart structures. J Franklin Inst 348(1):12–23. doi: 10.1016/j.jfranklin.2009.02.006,, mechatronics and its ApplicationsGoogle Scholar
  77. 77.
    MIDÉ Technology Corporation (2007) QuickPack actuator catalog. MIDÉ Technology Corporation, MedfordGoogle Scholar
  78. 78.
    MIDÉ Technology Corporation (2007) QuickPack power amplifier. MIDÉ Technology Corporation, Medford (Operator’s Manual)Google Scholar
  79. 79.
    MIDÉ Technology Corporation (2008) Attaching the quickpack/powerAct transducer to a structure with epoxy. MIDÉ Technology Corporation, Medford (quick Pack Technical Notes)Google Scholar
  80. 80.
    Montazeri A, Poshtan J, Choobdar A (2009) Performance and robust stability trade-off in minimax LQG control of vibrations in flexible structures. Eng Struct 31(10):2407–2413. doi: 10.1016/j.engstruct.2009.05.011,
  81. 81.
    Moon SM, Cole DG, Clark RL (2006) Real-time implementation of adaptive feedback and feedforward generalized predictive control algorithm. J Sound Vib 294(1–2):82–96. doi: 10.1016/j.jsv.2005.10.017,
  82. 82.
    National Instruments Corporation (2005) NI 6030E/6031E/6032E/6033E Family Specifications. National Instruments Corporation, Austin.
  83. 83.
    National Instruments Corporation (2007) DAQ E series user manual. National Instruments Corporation, Austin.
  84. 84.
    Neat G, Melody J, Lurie B (1998) Vibration attenuation approach for spaceborne optical interferometers. IEEE Trans Control Syst Technol 6(6):689–700. doi:10.1109/87.726529CrossRefGoogle Scholar
  85. 85.
    Nguyen C, Pietrzko S (2006) FE analysis of a PZT-actuated adaptive beam with vibration damping using a parallel R-L shunt circuit. Finite Elem Anal Des 42(14–15):1231–1239. doi: 10.1016/j.finel.2006.06.003,
  86. 86.
    Nouira H, Folte te E, Brik BA, Hirsinger L, Ballandras S (2008) Experimental characterization and modeling of microsliding on a small cantilever quartz beam. J Sound Vib 317(1–2):30–49. doi: 10.1016/j.jsv.2008.03.017, Google Scholar
  87. 87.
    O’Connor WJ (2006) Wave-echo control of lumped flexible systems. J Sound Vib 298(4–5):1001–1018. doi: 10.1016/j.jsv.2006.06.010, Google Scholar
  88. 88.
    Petersen IR, Pota HR (2003) Minimax LQG optimal control of a flexible beam. Control Eng Pract 11:1273–1287CrossRefGoogle Scholar
  89. 89.
    Podolan M (2007) Hliník a jeho zliatiny, ich porovnanie a dostupnost’ na trhu. Tech. rep., IMC Slovakia s.r.o. In: Aluminum and its alloys: comparison and market accessibility, Slovak language. Považská BystricaGoogle Scholar
  90. 90.
    Polóni T, Rohal’-Ilkiv B, Johansen TA (2010) Damped one-mode vibration model state and parameter estimation via pre-filtered moving horizon observer. In: 5th IFAC symposium on mechatronic systems. Mechatronics 2010, IFAC, Boston, pp 24–31Google Scholar
  91. 91.
    Preumont A (2002) Vibration control of active structures, 2nd edn. Kluwer Academic Publishers, DordrechtGoogle Scholar
  92. 92.
    Preumont A, Seto K (2008) Active control of structures, 3rd edn. Wiley, ChichesterCrossRefGoogle Scholar
  93. 93.
    Qiu Z, Zhang X, Wu H, Zhang H (2007) Optimal placement and active vibration control for piezoelectric smart flexible cantilever plate. J Sound Vib 301:521–543MathSciNetCrossRefGoogle Scholar
  94. 94.
    Qiu ZC, Wu HX, Ye CD (2009) Acceleration sensors based modal identification and active vibration control of flexible smart cantilever plate. Aerosp Sci Technol 13(6):277–290. doi: 10.1016/j.ast.2009.05.003,
  95. 95.
    Scheibner D, Mehner J, Brämer B, Gessner T, Dötzel W (2003) Wide range tuneable resonators for vibration measurements. Microelectron Eng 67–68:542–549CrossRefGoogle Scholar
  96. 96.
    Shan J, Liu HT, Sun D (2005) Slewing and vibration control of a single-link flexible manipulator by positive position feedback (PPF). Mechatronics 15(4):487–503. doi: 10.1016/j.mechatronics.2004.10.003, Google Scholar
  97. 97.
    Shen H, Qiu J, Ji H, Zhu K, Balsi M, Giorgio I, Dell’Isola F (2010) A low-power circuit for piezoelectric vibration control by synchronized switching on voltage sources. Sens Actuators A 161(1–2):245–255. doi: 10.1016/j.sna.2010.04.012,
  98. 98.
    Shieh J, Huber JE, Fleck NA, Ashby MF (2001) The selection of sensors. Prog Mater Sci 46(3–4):461–504. doi: 10.1016/S0079-6425(00)00011-6,, Google Scholar
  99. 99.
    Siemens Industry Incorporated (2010) Capacitive proximity sensors: theory of operation. Munich,
  100. 100.
    Skullestad A, Hallingstad O (1998) Vibration parameters identification in a spacecraft subjected to active vibration damping. Mechatronics 8(6):691–705. doi: 0.1016/S0957-4158(97)00051-2,
  101. 101.
    Sloss J, Bruch J, Sadek I, Adali S (2003) Piezo patch sensor/actuator control of the vibrations of a cantilever under axial load. Compos Struct 62:423–428CrossRefGoogle Scholar
  102. 102.
    Sodano HA, Inman DJ (2007) Non-contact vibration control system employing an active eddy current damper. J Sound Vib 305(4–5):596–613. doi: 10.1016/j.jsv.2007.04.050, Google Scholar
  103. 103.
    Šolek P (2009) Numerical analyses of piezoelectric elements, 1st edn. Slovenská technická univerzita v Bratislave, Nakladatel’stvo STU, BratislavaGoogle Scholar
  104. 104.
    Šolek P, Starek L, Hulkó G, Šedivý C, Cibiri Š (2005) Theoretical and experimental study of efficient suppression vibrations in a clamped square plate. Inženýrská Mechanika Engineering Mechanics 12(A1):277–284Google Scholar
  105. 105.
    Spangler R (2007) Piezo sensor technical note, 2nd edn. MIDÉ Technology Corporation, MedfordGoogle Scholar
  106. 106.
    Sun D, Mills JK, Shan J, Tso SK (2004) A PZT actuator control of a single-link flexible manipulator based on linear velocity feedback and actuator placement. Mechatronics 14(4):381–401. doi: 10.1016/S0957-4158(03)00066-7, Google Scholar
  107. 107.
    Tabak F, Disseldorp E, Wortel G, Katan A, Hesselberth M, Oosterkamp T, Frenken J, van Spengen W (2010) MEMS-based fast scanning probe microscopes. Ultramicroscopy 110(6):599–604. doi: 10.1016/j.ultramic.2010.02.018,, 11th International Scanning Probe Microscopy ConferenceGoogle Scholar
  108. 108.
    Takács G, Rohal’-Ilkiv B (2009) Implementation of the Newton-Raphson MPC algorithm in active vibration control applications. In: Mace BR, Ferguson NS, Rustighi E (eds). Proceedings of the 3rd international conference on noise and vibration: emerging methods. OxfordGoogle Scholar
  109. 109.
    Takács G, Rohal’-Ilkiv B (2009) Newton-Raphson MPC controlled active vibration attenuation. In: Hangos KM (eds) Proceedings of the 28. IASTED international conference on modeling, identification and control, InnsbruckGoogle Scholar
  110. 110.
    Takács G, Rohal’-Ilkiv B (2010) Capacitive proximity sensor position feedback in active vibration control of lightly damped cantilevers. In: Shokin YI, Bychkov I, Potaturkin O (eds). Proceedings of the 3rd IASTED international multiconference ACIT-CDA. Novosibirsk, pp 692–700Google Scholar
  111. 111.
    Takács G, Rohal’-Ilkiv B (2010) Piezoelectric wafer based feedback in vibration control of lightly damped beams. In: Proceedings of the 9th international scientific—technical conference—Process control 2010, Kouty nad Desnou, p C43aGoogle Scholar
  112. 112.
    The Mathworks (2007) xPC Target 4. Software. The MathWorks Inc., Natick.
  113. 113.
    The MathWorks (2008) xPC target for use with real-time workshop, 6th edn. The MathWorks Inc., Natick.
  114. 114.
    The Mathworks (2009) How can I look at the data in a file created by the file scope block on the host machine in xPC Target 2.7.2 (R14SP2). The MathWorks Inc., Natick. Available:
  115. 115.
    The Mathworks (2011) Matlab system identification toolbox v7.4.2 (R2011a). Software. The MathWorks Inc., Natick. Available:
  116. 116.
    Torra V, Isalgue A, Martorell F, Terriault P, Lovey F (2007) Built in dampers for family homes via SMA: An ANSYS computation scheme based on mesoscopic and microscopic experimental analyses. Eng Struct 29(8):1889–1902. doi: 10.1016/j.engstruct.2006.08.028, 2/8742fa675c346a7b34f395d9422cbc22 Google Scholar
  117. 117.
    Wang W, Yang Z (2009) A compact piezoelectric stack actuator and its simulation in vibration control. Tsinghua Sci Technol 14(Suppl 2):43–48. doi: 10.1016/S1007-0214(10)70029-8,
  118. 118.
    Wills AG, Bates D, Fleming AJ, Ninness B, Moheimani SOR (2008) Model predictive control applied to constraint handling in active noise and vibration control. IEEE Trans Control Syst Technol 16(1):3–12CrossRefGoogle Scholar
  119. 119.
    Wilson DG, Robinett RD, Parker GG, Starr GP (2002) Augmented sliding mode control for flexible link manipulators. J Intell Rob Syst 34:415–430. doi: 10.1023/A:1019635709331 Google Scholar
  120. 120.
    Xiaojin Z, Miao Z, Zhiyuan G, Zhiyan C (2010) Analysis of active vibration control for piezoelectric intelligent structures by ANSYS and MATLAB. In: 2010 international conference on computer application and system modeling (ICCASM), vol 4. pp V4-184 –V4-188. doi:  10.1109/ICCASM.2010.5619058
  121. 121.
    Yim W (1996) Modified nonlinear predictive control of elastic manipulators. In: Proceedings of the 1996 IEEE international conference on robotics and automation, vol 3. pp 2097–2102.  10.1109/ROBOT.1996.506180
  122. 122.
    Zhang P (2008) Sensors and actuators for industrial control. In: Industrial control technology, William Andrew Publishing, Norwich, pp 1–186. doi: 10.1016/B978-081551571-5.50002-5
  123. 123.
    Zheng K, Zhang Y, Yang Y, Yan S, Dou L, Chen J (2008) Active vibration control of adaptive truss structure using fuzzy neural network. In: Control and decision conference, CCDC 2008. Chinese, pp 4872–4875. doi:  10.1109/CCDC.2008.4598254
  124. 124.
    Zmeu K, Shipitko E (2005) Predictive controller design with offline model learning for flexible beam control. In: Proceedings of the 2005 international conference on physics and control, pp 345–350. doi: 10.1109/PHYCON.2005.1514005

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Gergely Takács
    • 1
  • Boris Rohal’-Ilkiv
    • 1
  1. 1.Faculty of Mechanical Engineering, Institute of Automation, Measurement and Applied InformaticsSlovak University of Technology in BratislavaBratislava 1Slovakia

Personalised recommendations