Skip to main content

Key Issues in Life Cycle Assessment of Biofuels

  • Chapter
  • First Online:
Sustainable Bioenergy and Bioproducts

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The production of sustainable bioenergy is a challenging task in the promotion of biofuels for replacing the fossil based fuels to get cleaner environment and also to reduce the dependency on other countries and uncertainty of fuel price. One biofuels might be very attractive for heat production and not so attractive for electricity and transport purposes. The commercial-scale production of biofuels requires careful consideration of several issues that can be broadly categorized as: selecting biomass, cultivation technology, growth inputs (nutrients, water, etc.) and biofuel conversion technology. The life cycle assessment (LCA) is a tool that can be used effectively in assessing various biofuels for their sustainability and can help to policy makers to choose the best biofuels for specific purpose. Allocation method is very important in assessing the sustainability of biofuels as different allocation methods responded differently. The present chapter is an effort to highlight the key issues to consider in conducting an LCA for biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal AK (2007) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust Sci 33:233–271

    Article  Google Scholar 

  2. Aleklett K, Campbell CJ (2003) The peak and decline of world oil and gas production. Miner Energy 18:35–42

    Google Scholar 

  3. Azapagic A, Clift R (1999) Allocation of environmental burdens in co-product systems: product-related burdens. Int J Life Cycle Assess 4:357–369

    Article  Google Scholar 

  4. Biswas WK, Barton L, Carter D (2011) Biodiesel production in a semiarid environment: a life cycle assessment approach. Environ Sci Technol 45:3069–3074

    Article  Google Scholar 

  5. Brennan L, Owende P (2010) Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577

    Article  Google Scholar 

  6. Brent AC, Rohwer MB, Friedrich E, Von Blottnitz H (2002) Status of life cycle assessment and engineering research in South Africa. Int J Life Cycle Assess 7:167–172

    Article  Google Scholar 

  7. Carere CR, Sparling R, Cicek N, Levin DB (2008) Third generation biofuels via direct cellulose fermentation. Int J Mol Sci 9:1342–1360

    Article  Google Scholar 

  8. Curran MA (2007) Co-product and input allocation approaches for creating life cycle inventory data: a literature review. Int J Life Cycle Assess 1:65–78

    Google Scholar 

  9. Davis SC, Anderson-Teixeira KJ, DeLucia EH (2009) Life-cycle analysis and the ecology of biofuels. Trends Plant Sci 14:140–146

    Article  Google Scholar 

  10. de Eicker MO, Hischier R, Kulay LA, Lehmann M, Zah R, Hurni H (2010) The applicability of non-local LCI data for LCA. Environ Impact Assess Rev 30:192–199

    Article  Google Scholar 

  11. Ekvall T, Tillman A-M (1997) Open-loop recycling: criteria for allocation procedures. Int J Life Cycle Assess 2:155–162

    Article  Google Scholar 

  12. Ekvall T, Weidema BP (2004) System boundaries and input data in consequential life cycle inventory analysis. Int J Life Cycle Assess 9(3):161–171

    Article  Google Scholar 

  13. Elkington J (1998) Cannibals with forks—the triple bottom line of 21st century business. New Society, Canada

    Google Scholar 

  14. Elsayed MA, Matthews R, Mortimer ND (2003) Carbon and energy balances for a range of biofuels options. Final report—prepared for the department of trade and industry renewable energy programme. Unit of Sheffield Hallam University and Forest Research, UK

    Google Scholar 

  15. Farrell AE, Pelvin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508

    Article  Google Scholar 

  16. Fulton L, Howes T, Hardy J (2004) Biofuels for transport: an international perspective. International Energy Agency (IEA), Paris

    Google Scholar 

  17. Gabrielle B, Gagnaire N (2008) Life-cycle assessment of straw use in bio-ethanol production: a case study based on biophysical modeling. Biomass Bioenergy 32:431–441

    Article  Google Scholar 

  18. Gnansounou E (2011) Assessing the sustainability of biofuels: a logic-based model. Energy 36:2089–2096

    Article  Google Scholar 

  19. Gnansounou E, Dauriat A, Villegas J, Panichelli L (2009) Life cycle assessment of biofuels: energy and greenhouse gas balances. Bioresour Technol 100:4919–4930

    Article  Google Scholar 

  20. Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, de Koning A, van Oers L, Wegener Sleeswijk A, Suh S, Udo de Haes HA, de Bruijn H, van Duin R, Huijbregts MAJ (2002) Handbook on life cycle assessment: operational guide to the ISO standards. Kluwer Academic, USA

    Google Scholar 

  21. Gullison RE, Frumhoff PC, Canadell JG, Field CB, Nepstad DC, Hayhoe K, Avissar R, Curran LM, Friedlingstein P, Jones CD, Nobre C (2007) Tropical forests and climate policy. Science 316:985–986

    Article  Google Scholar 

  22. Haye S, Hardtke CS (2009) The roundtable on sustainable biofuels: plant scientist input needed. Trends Plant Sci 14(8):409–412

    Article  Google Scholar 

  23. He Y, Wang S, Lai KK (2010) Global economic activity and crude oil prices: a cointegration analysis. Energy Econ 32:868–876

    Article  Google Scholar 

  24. Heijungs R, Guinée J, Kleijn R, Rovers V (2007) Bias in normalization: causes, consequences, detection and remedies. Int J LCA 12:211–216

    Article  Google Scholar 

  25. Heijungs R, Kleijn R (2001) Numerical approaches towards life cycle interpretation five examples. Int J LCA 6:141–148

    Article  Google Scholar 

  26. IEA (2007) World energy outlook 2007. International Energy Agency, Paris

    Google Scholar 

  27. IEA (2009) IEA scoreboard 2009–35 key energy trends over 35 years. International Energy Agency, France

    Google Scholar 

  28. IEA (2010) CO2 emissions from fuel combustion highlights (2010 edn). International Energy Agency, France

    Google Scholar 

  29. IEA (2011) Technology roadmap biofuels for transport. International Energy Agency, France

    Google Scholar 

  30. IFEU (2000) Bioenergy for Europe: which ones fit best?–a comparative analysis for the community. Institute for Energy and Environmental Research, Heidelberg

    Google Scholar 

  31. ISO (1998) ISO 14041: environmental management—life cycle assessment—goal and scope definition and inventory analysis. ISO 14041:1998(E), International Standards Organization

    Google Scholar 

  32. ISO (2005) 14040-Environmental management—life cycle assessment—requirements and guidelines. International Standard Organisation p 54

    Google Scholar 

  33. ISO (2006) ISO 14044: environmental management—life cycle assessment—requirements and guidelines. ISO 14044:2006(E), International Standards Organization

    Google Scholar 

  34. Jensen AA, Hoffman L, Møller BT, Schmidt A, Christiansen K, Elkington J, van Dijk F (1997) Life-cycle assessment (LCA)—a guide to approaches, experiences and information sources. Environmental issues series no. 6. European Environment Agency, Copenhagen

    Google Scholar 

  35. Kim S, Dale DE (2002) Allocation procedure in ethanol production system from corn grain: I. System expansion. Int J Life Cycle Assess 7:237–243

    Article  Google Scholar 

  36. Kiwjaroun C, Tubtimdee C, Piumsomboon P (2009) LCA studies comparing biodiesel synthesized by conventional and supercritical methanol methods. J Clean Prod 17:143–153

    Article  Google Scholar 

  37. Korres NE, Singh A, Nizami AS, Murphy JD (2010) Is grass biomethane a sustainable transport biofuel. Biofuels Bioprod Biorefin 4:310–325

    Article  Google Scholar 

  38. Korres NE, Thamsiriroj T, Smyth BM, Nizami AS, Singh A, Murphy JD (2011) Grass biomethane for agriculture and energy. In: Lichtouse E (ed) Genetics, biofuels and local farming systems, sustainable agriculture reviews 7. Springer, New York

    Google Scholar 

  39. Larson ED (2006) A review of life-cycle analysis studies on liquid biofuel systems for the transport sector. Energy Sustain Develop 10:109–126

    Article  Google Scholar 

  40. Markevičius A, Katinas V, Perednis E, Tamasauskiene M (2010) Trends and sustainability criteria of the production and use of liquid biofuels. Renew Sustain Energy Rev 14:3226–3231

    Article  Google Scholar 

  41. Monti A, Fazio S, Venturi G (2009) Cradle-to-farm gate life cycle assessment in perennial energy crops. Eur J Agron 31:77–84

    Article  Google Scholar 

  42. Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energ Combust Sci 37:52–68

    Article  Google Scholar 

  43. Onn CC, Yusoff S (2010) The formulation of life cycle impact assessment framework for Malaysia using eco-indicator. Int J Life Cycle Assess 15:985–993

    Article  Google Scholar 

  44. Pant D, Singh A, Bogaert GV, Diels L, Vanbroekhoven K (2011) An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: relevance and key aspects. Renew Sustain Energy Rev 15:1305–1313

    Article  Google Scholar 

  45. Pant D, Van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101:1533–1543

    Article  Google Scholar 

  46. Phalan B (2009) The social and environmental impacts of biofuels in Asia: an overview. Appl Energy 86:S21–S29

    Article  Google Scholar 

  47. Phetteplace HW, Johnson DE, Seidi AF (2001) Greenhouse gas emissions from simulated beef and dairy livestock systems in the United States. Nutr Cycl Agroecosyst 60:99–102

    Article  Google Scholar 

  48. Pickett J, Anderson D, Bowles D, Bridgwater T, Jarvis P, Mortimer N, Poliakoff M, Woods J (2008) Sustainable biofuels: prospects and challenges. The Royal Society, London

    Google Scholar 

  49. Power N, Murphy JD (2009) Which is the preferable transport fuel on a greenhouse gas basis: biomethane or ethanol? Biomass Bioenergy 33:1403–1412

    Article  Google Scholar 

  50. Prasad S, Singh A, Jain N, Joshi HC (2007) Ethanol production from sweet sorghum syrup for utilization as automotive fuel in India. Energy Fuels 21:2415–2420

    Article  Google Scholar 

  51. Prasad S, Singh A, Joshi HC (2007) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recycl 50:1–39

    Article  Google Scholar 

  52. Reap J, Roman F, Duncan S, Bras B (2008) A survey of unresolved problems in life cycle assessment part 1: goal and scope and inventory analysis. Int J Life Cycle Assess 13:290–300

    Article  Google Scholar 

  53. Reap J, Roman F, Duncan S, Bras B (2008) A survey of unresolved problems in life cycle assessment part 2: impact assessment and interpretation. Int J Life Cycle Assess 13:374–388

    Article  Google Scholar 

  54. Reinhard J, Zah R (2011) Consequential life cycle assessment of the environmental impacts of an increased rapemethylester (RME) production in Switzerland. Biomass Bioenergy 35:2361–2373. doi:10.1016/j.biombioe.2010.12.011

    Article  Google Scholar 

  55. SAIC (2006) Life cycle assessment: principles and practice. Scientific applications international corporation (SAIC), report no. EPA/600/R-06/060. National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Cincinnati, Ohio

    Google Scholar 

  56. Schenk P, Thomas-Hall S, Stephens E, Marx U, Mussgnug J, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg Res 1:20–43

    Article  Google Scholar 

  57. Silva Lora EE, Escobar Palacio JC, Rocha MH, Grillo Renó ML, Venturini OJ, del Olmo OA (2011) Issues to consider, existing tools and constraints in biofuels sustainability assessments. Energy 36:2097–2110

    Article  Google Scholar 

  58. Singh A, Nigam PS, Murphy JD (2011) Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol 102:10–16

    Article  Google Scholar 

  59. Singh A, Nigam PS, Murphy JD (2011) Mechanism and challenges in commercialisation of algal biofuels. Bioresour Technol 102:26–34

    Article  Google Scholar 

  60. Singh A, Olsen SI (2011) Algal biofuels: key issues, sustainability and life cycle assessment. In: Petersen LS, Larsen H (eds) Energy systems and technologies for the coming century. Proceedings, Risø international energy conference, 10–12 May 2011, pp 275–282

    Google Scholar 

  61. Singh A, Olsen SI (2011) Critical analysis of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl Energy 88:3548–3555

    Article  Google Scholar 

  62. Singh A, Olsen SI, Nigam PS (2011) A viable technology to generate third generation biofuel. J Chem Tech Biotech. doi:10.1002/jctb.2666 [Epub ahead of print]

  63. Singh A, Pant D, Korres NE, Nizami AS, Prasad S, Murphy JD (2010) Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: challenges and perspectives. Bioresour Technol 101(13):5003–5012

    Article  Google Scholar 

  64. Singh A, Smyth BM, Murphy JD (2010) A biofuel strategy for Ireland with an emphasis on production of biomethane and minimization of land-take. Renew Sustain Energy Rev 14(1):277–288

    Article  Google Scholar 

  65. Spatari S, Zhang Y, MacLean HL (2005) Life cycle assessment of switchgrass- and corn stover-derived ethanol-fueled automobiles. Environ Sci Technol 39:9750–9758

    Article  Google Scholar 

  66. UNCED (1992) Promoting sustainable human settlement development. Report of the United Nation conference on environment and development, vol 1, chap 7. United Nations Division for Sustainable Development, Rio de Janeiro

    Google Scholar 

  67. Wenzel H, Hauschild M, Alting L (1997) Environmental Assessment of Products. Vol. 1 Methodology, tools and case studies in product development. Kluwer Academic, USA

    Google Scholar 

  68. Wu M, Wang M, Huo H (2006) Fuel-cycle assessment of selected bioethanol production pathways in the United States. Argonne National Laboratory, Argonne ANL/ESD/06-7

    Google Scholar 

  69. Yan J, Lin T (2009) Bio-fuels in Asia. Appl Energy 86:S1–S10

    Article  Google Scholar 

  70. Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y (2011) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol 102:159–165

    Article  Google Scholar 

  71. Zah R, Faist M, Reinhard J, Birchmeier D (2009) Standardized and simplified life-cycle assessment (LCA) as a driver for more sustainable biofuels. J Clean Prod 17:S102–S105

    Article  Google Scholar 

  72. Zah R, Hischier R, Gauch M, Lehmann M, Boni H, Wager P (2007) Life cycle assessment of energy products: environmental impact assessment of biofuels. Bundesamt fur Energie, Bundesamt fur Umwelt, Bundesamt fur Landwirtschaft, Bern, p 20

    Google Scholar 

  73. Zhao R, Bean SR, Wang D, Park SH, Schober TJ, Wilson JD (2009) Small-scale mashing procedure for predicting ethanol yield of sorghum grain. J Cereal Sci 49(2):230–238

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anoop Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Singh, A., Olsen, S.I. (2012). Key Issues in Life Cycle Assessment of Biofuels. In: Gopalakrishnan, K., van Leeuwen, J., Brown, R. (eds) Sustainable Bioenergy and Bioproducts. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-2324-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2324-8_11

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2323-1

  • Online ISBN: 978-1-4471-2324-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics