A Hybrid Parallel Genetic Algorithm for the Winner Determination Problem in Combinatorial Auctions

Conference paper

Abstract

In this work, we are interested in the optimal winner determination problem (WDP) in combinatorial auctions. Given a set of bundles bids, the winner determination problem is to decide which of the bids to accept. More precisely, the WDP is finding an allocation that maximizes the auctioneer's revenue, subject to the constraint that each item can be allocated at most once. This paper tries to propose a hybrid parallel genetic algorithm for the winner determination problem.Experiments on realistic data sets of various sizes are performed to show and compare the effectiveness of our approach.

Keywords

Migration Tame 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersson, A., Tenhunen, M., Ygge, F.: Integer programming for combinatorial auction winner determination. In: Proceedings of 4th International Conference on Multi-Agent Systems, pp. 39–46. IEEE Computer Society, July (2000).Google Scholar
  2. 2.
    Boughaci, D., Drias, H., Benhamou, B.: Stochastic local search for the optimal winner determination problem in combinatorial auctions. In: The International Conference on Constraint Programming, CP 2008. LNCS, pp. 593–597 (2008).Google Scholar
  3. 3.
    Boughaci, D., Drias, H., Benhamou, B.: A memetic algorithm for the optimal winner determination problem. In: Soft Computing—a Fusion of Foundations, Methodologies and Applications, vol. 13, no. 8–9, pp. 905–917. Springer, Berlin (2009).Google Scholar
  4. 4.
    Fujishima, Y., Leyton-Brown, K., Shoham, Y.: Taming the computational complexity of combinatorial auctions: optimal and approximate approaches. In: Sixteenth International Joint Conference on Artificial Intelligence, pp. 48–53 (1999)Google Scholar
  5. 5.
    Guo, Y., Lim, A., Rodrigues, B., Zhu, Y.: Heuristics for a brokering set packing problem. In: Proceedings of eighth international symposium on artificial intelligence and mathematics, pp. 10–14 (2004).Google Scholar
  6. 6.
    Guo, Y., Lim, A., Rodrigues, B., Zhu, Y.: Heuristics for a bidding problem. Comput. Oper. Res. 33(8), 2179–2188 (2006).MATHCrossRefGoogle Scholar
  7. 7.
    Hoos, H.H., Boutilier, C.: Solving combinatorial auctions using stochastic local search. In: Proceedings of the 17th National Conference on Artificial Intelligence, pp. 22–29 (2000).Google Scholar
  8. 8.
    Lau, H.C., Goh, Y.G.: An intelligent brokering system to support multi-agent web-based 4thparty logistics. In: Proceedings of the 14th International Conference on Tools with Artificial Intelligence, pp. 54–61 (2002).Google Scholar
  9. 9.
    Leyton-Brown, K., Tennenholtz, M., Shoham, Y.: An algorithm for multi-unit combinatorial auctions. In: Proceedings of the 17th National Conference on Artificial Intelligence, Austin, Games-2000, Bilbao, and ISMP-2000, Atlanta (2000).Google Scholar
  10. 10.
    Munawar, A.,Wahib,M.,Munetomo, M., Akama, K.: Optimization Problem Solving Framework Employing GAs with Linkage Identification over a Grid Environment. In: CEC 2007: Proceedings of IEEE congress on Evolutionary Computation, Singapore (2007).Google Scholar
  11. 11.
    Munawar, Wahib, M., A., Munetomo, M., Akama, K.: A General Service-Oriented Grid Computing Framework For Global Optimization Problem Solving. In: SCC 2008: Proceedings of the 2008 IEEE International Conference on Services Computing, Honolulu, Hawaii, USA. IEEE, Los Alamitos (2008).Google Scholar
  12. 12.
    Rothkopf, M.H., Pekee, A., Ronald, M.: Computationally manageable combinatorial auctions. Manage. Sci. 44(8), 1131–1147 (1998)MATHCrossRefGoogle Scholar
  13. 13.
    Sandholm, T.: Algorithms for optimal winner determination in combinatorial auctions. Artificial. Intelligence. 135(1–2), 1–54 (1999).MathSciNetGoogle Scholar
  14. 14.
    Sandholm, T., Suri, S.: Improved optimal algorithm for combinatorial auctions and generalizations. In: Proceedings of the 17th National Conference on Artificial Intelligence, pp. 90–97 (2000).Google Scholar
  15. 15.
    Sandholm, T., Suri, S., Gilpin, A., Levine, D.: CABoB: a fast optimal algorithm for combinatorial auctions. In: Proceedings of the International Joint Conferences on Artificial Intelligence, pp. 1102–1108 (2001).Google Scholar
  16. 16.
    Sandholm, T.: Optimal winner determination algorithms. In: Cramton, P., et al. (ed.), Combinatorial Auctions. MIT, Cambridge (2006).Google Scholar
  17. 17.
    Vries de S and R. Vohra, 'Combinatorial auctions a survey', In INFORMS Journal of Computing, Vol 15, pp. 284-309, (2003).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Dalila Boughaci
    • 1
  • Louiza Slaouti
    • 2
  • Kahina Achour
    • 2
  1. 1.Department of Computer Science-LRIA Laboratory of Research in Artificial IntelligenceUniversity of Sciences and Technology Houari BoumedièneAlgiersAfrica
  2. 2.

Personalised recommendations