Advanced Coding, Modulation and Signal Processing

  • Laurent Clavier
  • Dejan Vukobratovic
  • Matthias Wetz
  • Werner Teich
  • Andreas Czylwik
  • Kimmo Kansanen
Part of the Signals and Communication Technology book series (SCT)


This chapter deals with advanced coding, physical layer and signal processing issues. The evolution of technologies makes the specific activities on these subjects in the COST 2100 action disparate. One reason is that the amount of work available in the community is huge, and it can appear that the real challenges for future networks are not in algorithms or new coding schemes. However this point of view can be mitigated because new networks induce new constraints that modify the way to optimize traditional techniques. A second reason is that many works are connected to specific applications.

In Sect. 9.1, we consider advanced coding techniques and, more specifically, the design of physical layer FEC schemes based on LDPC codes. The coding over bits idea is then replaced by coding over packets, and packet-based application layer FEC techniques are presented. Section 9.2 is dedicated to another essential topic in coding, iterative techniques. Iterative demodulation and decoding, turbo equalization are discussed, and some more general tools are presented for application and design of iterative schemes: factor graphs, Sum-Product Algorithm (SPrA) and Extrinsic Information Transfer (EXIT) charts.

A lot of consideration has also been put on multicarrier and adaptive schemes. They are discussed in Sect. 9.3.

Section 9.4 discusses channel estimation and synchronization. Some solutions to face network evolutions are discussed. Especially, ways to reduce the needed signalization in Frequency-Division Duplex (FDD) context, considerations on complexity/performance trade-offs, channel estimation in high mobility and frame synchronization using the constraints imposed by coding are proposed. This chapter ends on the important topic of network interference. A modeling approach based on α-stable distribution is proposed when IR-UWB is concerned and the consequences on receiver design and multihop transmissions are discussed. Finally solutions for interference limited OFDM systems are proposed.


Orthogonal Frequency Division Multiplex Channel Estimation Minimum Mean Square Error Orthogonal Frequency Division Multiplex System Forward Error Correction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [AGR98]
    P. D. Alexander, A. J. Grant, and M. C. Reed. Iterative detection in code-division multiple-access with error control coding. European Transactions on Telecommunications (ETT), 9(5):419–425, 1998. CrossRefGoogle Scholar
  2. [BGT93]
    C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit error correcting coding and decoding: turbo codes. In IEEE ICC International Conference on Communications, pages 1064–1070, Geneva, Switzerland, 1993. CrossRefGoogle Scholar
  3. [BLMR98]
    J. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital fountain approach to reliable distribution of bulk data. In ACM SIGCOMM 1998, pages 56–67, Vancouver, Canada, 1998. CrossRefGoogle Scholar
  4. [BNM09]
    C. Blankenhorn, M. Necker, and C. Muller. Improving reliable multicast streaming in IEEE 802.11 wireless networks. Technical Report TD-09-826, Valencia, Spain, May 2009. Google Scholar
  5. [Bot07]
    V. Bota. Joint modeling of the multipath channel and user-access for adaptive modulation OFDM schemes. Technical Report TD-07-348, Duisburg, Germany, September 2007. Google Scholar
  6. [BSV05]
    D. Bajic, C. Stefanovic, and D. Vukobratovic. Search process and probabilistic bifix approach. In Proc. of the International Symposium on Information Theory, ISIT 2005, pages 19–22, Adelaide, Australia, September 2005. CrossRefGoogle Scholar
  7. [Bur07]
    A. Burr. Analytical derivation of performance of soft-in, soft-out demodulation. Technical Report TD-07-318, Duisburg, Germany, September 2007. Google Scholar
  8. [BY09]
    N. C. Beaulieu and D. J. Young. Designing time-hopping ultrawide bandwidth receivers for multiuser interference environments. Proceedings of the IEEE, 97(2):255–284, 2009. CrossRefGoogle Scholar
  9. [CCX+10]
    J. Chen, L. Clavier, Y. Xi, A. Burr, N. Rolland, and P. Rolland. Alpha-stable interference modelling and relay selection for regenerative cooperative IR-UWB systems. In European Wireless Technology Conference (EuWiT), September 2010. [Also available as TD(10)10100]. Google Scholar
  10. [CG04]
    T. M. Cassaro and C. N. Georghiades. Frame synchronization for coded systems over AWGN channels. IEEE Trans. Commun., 52:484–489, 2004. CrossRefGoogle Scholar
  11. [CGD04]
    M. Colas, G. Gelle, and D. Declercq. Analysis of iterative receivers for clipped COFDM signaling based on soft Turbo-DAR. In Proc. 1st International Symposium on Wireless Communication Systems, ISWCS’04, pages 110–114, Mauritius, September 2004. Google Scholar
  12. [CH03]
    H. Chen and A. M. Haimovich. An iterative method to restore the performance of clipped and filtered OFDM signals. In Proc. ICC 2003—IEEE Int. Conf. Commun., vol. 5, pages 3438–3442, Anchorage, AK, May 2003. Google Scholar
  13. [CHC07]
    Y. Chen, L. Häring, and A. Czylwik. Signaling overhead in OFDM systems with adaptive modulation. Technical Report TD-09-864, Valencia, Spain, May 2007. Google Scholar
  14. [CHC09]
    Y. Chen, L. Häring, and A. Czylwik. Reduction of AM-induced signalling overhead in WLAN-based OFDM systems statistics. In Proceedings of the 14th International OFDM Workshop 2009, Hamburg, 2009. Google Scholar
  15. [DCG07]
    R. Déjardin, M. Colas, and G. Gellé. On the iterative receivers mitigating the clipping noise in coded OFDM systems. Technical Report TD-07-046, Lisbon, Portugal, February 2007. Google Scholar
  16. [DPD+95]
    C. Douillard, A. Picart, P. Didier, M. Jézéquel, C. Berrou, and A. Glavieux. Iterative correction of intersymbol interference: turbo-equalization. European Transactions on Telecommunications (ETT), 6(5):507–512, 1995. CrossRefGoogle Scholar
  17. [DR02]
    G. Durisi and G. Romano. On the validity of Gaussian approximation to characterize the multiuser capacity of UWB TH-PPM. In IEEE Conf. on Ultra Wideband Systems and Technologies, pages 20–23, May 2002. Google Scholar
  18. [Gal62]
    R. G. Gallager. Low-density parity-check codes. IRE Trans. Inform. Theory, IL-8:21–28, 1962. MathSciNetCrossRefGoogle Scholar
  19. [GCA+10]
    H. E. Ghannudi, L. Clavier, N. Azzaoui, F. Septier, and P. A. Rolland. α-stable interference modeling and Cauchy receiver for an IR-UWB ad hoc network. IEEE Trans. Commun., 58(6):1748–1757, 2010. [Also available as TD(08)423] CrossRefGoogle Scholar
  20. [GCR07]
    H. E. Ghannudi, L. Clavier, and P. A. Rolland. Modeling multiple access interference in ad hoc networks based on IR-UWB signals up-converted to 60 GHz. In European Conference on Wireless Technologies, pages 106–109, Munich, Germany, October 2007. CrossRefGoogle Scholar
  21. [GPA06]
    J. G. Gonzalez, J. L. Paredes, and G. R. Arce. Zero-order statistics: a mathematical framework for the processing and characterization of very impulsive signals. IEEE Trans. Signal Processing, 54(10):3839–3851, 2006. CrossRefGoogle Scholar
  22. [GPE09]
    P. Grønsund, H. N. Pham, and P. E. Engelstad. Towards dynamic spectrum access in primary OFDMA systems. In Proc. PIMRC 2009—IEEE 20th Int. Symp. on Pers., Indoor and Mobile Radio Commun., pages 848–852, Tokyo, Japan, September 2009. [Also available as TD(09)875]. Google Scholar
  23. [Hag97]
    J. Hagenauer. The turbo principle: tutorial introduction and state of the art. In Proc. International Symposium on Turbo Codes, pages 1–11, Brest, France, September 1997. Google Scholar
  24. [HCC07]
    L. Haring, A. Czylwik, and Y. Chen. A cross-layer comparison of two design philosophies for discrete-rate adaptive transmission. Technical Report TD-07-312, Duisburg, Germany, September 2007. Google Scholar
  25. [HCC09]
    L. Haring, A. Czylwik, and Y. Chen. Automatic modulation classification in application to wireless OFDM systems with adaptive modulation in TDD mode. Technical Report TD-08-536, Trondheim, Norway, June 2009. Google Scholar
  26. [HK06]
    H. Huh and J. V. Krogmeier. A unified approach to optimum frame synchronization. IEEE Trans. Wireless Commun., 5:3700–3711, 2006. CrossRefGoogle Scholar
  27. [HS09]
    M. Hekrdla and J. Sykora. CPM constellation subspace projection maximizing average minimal distance—sufficiency condition and comparison to PC analysis. Technical Report TD-09-870, Valencia, Spain, May 2009. Google Scholar
  28. [IH96]
    J. Ilow and D. Hatzinakos. Impulsive noise modeling with stable distributions fading environments. In 8th IEEE Signal Processing Workshop on Statistical Signal and Array Processing, pages 140–143, June 1996. CrossRefGoogle Scholar
  29. [IHD02]
    R. Imad, S. Houcke, and C. Douillard. Blind frame synchronization on Gaussian channel. In Proc. of EUSIPCO 2007, Poznan, Poland, September 2002. Google Scholar
  30. [KL07]
    P. Kulakowski and W. Ludwin. Iterative channel estimation for space–time block codes. Technical Report TD-07-347, Duisburg, Germany, September 2007. Google Scholar
  31. [LBB09]
    Y. Liu, L. Brunel, and J. J. Boutros. Joint channel estimation and decoding using Gaussian approximation in a factor graph over multipath channel. In Proc. PIMRC 2009—IEEE 20th Int. Symp. on Pers., Indoor and Mobile Radio Commun., pages 3164–3168, September 2009. [Also available as TD(09)782]. Google Scholar
  32. [Lin99]
    J. Lindner. MC-CDMA in the context of general multiuser/multisubchannel transmission models. European Transactions on Telecommunications (ETT), 10(4):351–367, 1999. MathSciNetCrossRefGoogle Scholar
  33. [LKJV07]
    D. Lee, H. Kim, C. R. Jones, and J. D. Villasenor. Pilotless frame synchronization via LDPC code constraint feedback. Elect. Lett., 11:683–685, 2007. Google Scholar
  34. [MA03]
    P. Moqvist and T. Aulin. Orthogonalization by principle components applied to CPM. IEEE Trans. Commun., 51:1838–1845, 2003. CrossRefGoogle Scholar
  35. [MAC07]
    K. Maliatsos, A. Adamis, and P. Constantinou. Frequency synchronization, receiver architectures and polyphase filters for OFDMA systems with subband carrier allocation. Technical Report TD-07-381, Duisburg, Germany, September 2007. Google Scholar
  36. [MGCG10]
    H. B. Maad, A. Goupil, L. Clavier, and G. Gelle. Asymptotic analysis of performance LDPC codes in non-Gaussian channel. In Proc. IEEE Intern. Workshop on Signal Proc. Advances in Wirel. Comm. (SPAWC 2010), 2010. [Also available as TD(10)10082]. Google Scholar
  37. [MI02]
    W. Matsumoto and H. Imai. Blind synchronization with enhanced sum-product algorithm for low-density parity-check codes. In Proc. WPMC—Wireless Pers. Multimedia Commun., vol. 3, pages 966–970, Honolulu, USA, 2002. Google Scholar
  38. [MN96]
    D. J. C. MacKay and R. M. Neal. Near Shannon limit performance of low-density parity-check codes. Elect. Lett., 32(18):1645–1646, 1996. CrossRefGoogle Scholar
  39. [NCBG07a]
    K. M. Nasr, J. Cosmas, M. Bard, and J. Gledhill. Channel estimation for an echo canceller in DVB-T/H single frequency networks. Technical Report TD-07-315, Duisburg, Germany, September 2007. Google Scholar
  40. [NCBG07b]
    K. M. Nasr, J. Cosmas, M. Bard, and J. Gledhill. Echo canceller design and performance for on-channel repeaters in DVB-T/H networks. Technical Report TD-07-203, Lisbon, Portugal, February 2007. Google Scholar
  41. [NGB10]
    K. Nybom, S. Grönroos, and J. Björkqvist. Expanding window fountain coded scalable video in broadcasting. In IEEE International Conference on Multimedia and Expo, ICME 2010, Singapore, July 2010. [Also available as TD(09)934]. Google Scholar
  42. [Nie73a]
    P. T. Nielsen. On the expected duration of a search for a fixed pattern in random data. IEEE Trans. Inform. Theory, 19:702–704, 1973. MATHCrossRefGoogle Scholar
  43. [Nie73b]
    P. T. Nielsen. Some optimum and suboptimum frame synchronizers for binary data in Gaussian noise. IEEE Trans. Commun., 21:770–772, 1973. CrossRefGoogle Scholar
  44. [NS95]
    C. Nikias and M. Shao. Signal Processing with α-Stable Distributions and Applications. Wiley-Interscience, New York, 1995. Google Scholar
  45. [NV10]
    K. Nybom and D. Vukobratovic. Receiver-controlled fountain coding for layered source transmission over parallel broadcast channels. Technical Report TD-10-12078, Bologna, Italy, November 2010. Google Scholar
  46. [NVB09]
    K. Nybom, D. Vukobratovic, and J. Bjorkqvist. Sparse-graph AL-FEC solutions for IP datacasting in DVB-H. In IEEE International Symposium on Broadband Multimedia Systems Broadcasting, BMSB 2009, Bilbao, Spain, May 2009. [Also available as TD(07)355]. Google Scholar
  47. [OT04]
    R. Otnes and M. Tuchler. Iterative channel estimation for turbo equalization of time-varying frequency-selective channels. IEEE Trans. Wireless Commun., 3(6):1918–1923, 2004. CrossRefGoogle Scholar
  48. [PCG+06]
    P. Pinto, C.-C. Chong, A. Giorgetti, M. Chiani, and M. Win. Narrowband communication in a Poisson field of ultrawideband interferers. In The IEEE 2006 International Conference on Ultra-WideBand (ICUWB), pages 387–392, September 2006. CrossRefGoogle Scholar
  49. [PDTL09]
    E. Peiker, J. Dominicus, W. G. Teich, and J. Lindner. OFDM with windowing in the receiver for fast fading channels. Technical Report TD-09-823, Valencia, Spain, May 2009. Google Scholar
  50. [PFSTL10]
    E. Peiker-Feil, N. Schneckenburger, W. G. Teich, and J. Lindner. Improving SC-FDMA performance by time domain equalization for UTRA LTE uplink. In Proc. 15th International OFDM-Workshop, Hamburg, Germany, September 2010. [Also available as TD(10)12095]. Google Scholar
  51. [PLWL06]
    L. Ping, L. Liu, K. Wu, and W. K. Leung. Interleave division multiple access. IEEE Trans. Wireless Commun., 5(4):938–947, 2006. CrossRefGoogle Scholar
  52. [PP06]
    J. Poikonen and J. Paavola. Error models for the transport stream packet channel in the DVB-H link layer. In Proc. ICC—EEE Int. Conf. Commun., pages 1861–1866, Istanbul, Turkey, June 2006. Google Scholar
  53. [PS09]
    P. Prochazka and J. Sykora. Karhunen–Loève based reduced-complexity representation of the mixed-density messages in SPA on factor graph. Technical Report TD-09-958, Vienna, Austria, September 2009. Google Scholar
  54. [PVBS07]
    Z. A. Polgar, M. Varga, V. Bota, and D. Stoiciu. Performances of LDPC-coded QAM mapping of non-coded bits. Technical Report TD-07-359, Duisburg, Germany, September 2007. Google Scholar
  55. [PW07]
    N. Palleit and T. Weber. Uplink-downlink-transformation of the channel impulse response in FDD-systems. Technical Report TD-07-329, Duisburg, Germany, September 2007. Google Scholar
  56. [Rob95]
    P. Robertson. Optimal frame synchronization for continuous and packet data transmission. PhD thesis, VDI-Verlag, Dusseldorf, Germany, 1995. Google Scholar
  57. [RTR+08]
    A. Richter, F. Tufvesson, P. S. Rossi, K. Haneda, J. Koivunen, V. M. Kolmonen, J. Salmi, P. Almers, P. Hammarberg, K. Polonen, P. Suvikunnas, A. Molisch, O. Edfors, V. Koivunen, P. Vainikainen, and R. Muller. Wireless LANs with high throughput in interference-limited environments—project summary and outcomes. Technical Report TD-08-432, Wroclaw, Poland, February 2008. Google Scholar
  58. [RU07]
    T. Richardson and R. Urbanke. Modern Coding Theory. Cambridge University Press, Cambridge, UK, 2007. Google Scholar
  59. [SB07]
    C. Stefanovic and D. Bajic. Bifix analysis and acquisition times of synchronization sequences. Technical Report TD-07-331, Duisburg, Germany, September 2007. Google Scholar
  60. [SBS99]
    M. Schnell, I. De Broeck, and U. Sorger. A promising new wideband multiple-access scheme for future mobile communications systems. European Transactions on Telecommunications (ETT), 10:417–427, 1999. CrossRefGoogle Scholar
  61. [Sch80]
    R. A. Scholtz. Frame synchronization techniques. IEEE Trans. Commun., 28:1204–1212, 1980. CrossRefGoogle Scholar
  62. [SD07]
    S. Sadough and P. Duhamel. On optimal turbo decoding of wideband MIMO-OFDM systems under imperfect channel state information. Technical Report TD-07-035, Lisbon, Portugal, February 2007. Google Scholar
  63. [SDL08]
    E. Simon, V. Degardin, and M. Lienard. Sensitivity of block-IFDMA systems to carrier frequency offsets. Technical Report TD-08-615, Lille, France, October 2008. Google Scholar
  64. [SJM+09]
    M. Smolnikar, T. Javornik, M. Mohorcic, S. Papaharalabos, and P. T. Mathiopoulos. Rate-compatible punctured DVB-S2 LDPC codes for DVB-SH applications. In Proc. IEEE International Workshop on Satellite and Space Communications (IWSSC), Siena, Italy, September 2009. [Also available as TD(10)10021]. Google Scholar
  65. [SMR08]
    L. Smolyar, H. Messer, and A. Reichman. Interference reduction for downlink multi-cell OFDMA systems. Technical Report COST TD-08-633, Lille, France, October 2008. Google Scholar
  66. [Sou92]
    E. S. Sousa. Performance of a spread spectrum packet radio network in a Poisson field of interferers. IEEE Trans. Inform. Theory, 38(6):1743–1754, 1992. MATHCrossRefGoogle Scholar
  67. [SP08]
    J. Sykora and P. Prochazka. Performance evaluation of the factor graph CPM phase discriminator decoder with canonical messages and modulo mean updates. In Proc. APCC 2008—14th Asia-Pacific Conference on Communications, Tokyo, Japan, Oktober 2008. [Also available as TD(08)548]. Google Scholar
  68. [ST94]
    G. Samorodnitsky and M. S. Taqqu. Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapmann & Hall, London, 1994. MATHGoogle Scholar
  69. [SV04]
    J. Sun and M. C. Valenti. Optimum frame synchronization for preamble-less packet transmission of turbo-codes. In Proc. of the 38th Asilomar Conf., vol. 1, pages 1126–1130, Pacific Grove, USA, 2004. Google Scholar
  70. [SVB08a]
    C. Stefanovic, D. Vukobratovic, and D. Bajic. Frame synchronization using LDPC convolutional codes. Technical Report TD-08-445, Wroclaw, Poland, February 2008. Google Scholar
  71. [SVB08b]
    C. Stefanovic, D. Vukobratovic, and D. Bajic. Low-complexity frame synchronization for LDPC coded transmission. Technical Report TD-08-516, Trondheim, Norway, June 2008. Google Scholar
  72. [SVCS10]
    C. Stefanovic, D. Vukobratovic, V. Crnojevic, and V. Stankovic. A random linear coding scheme with perimeter data gathering for wireless sensor networks. Technical Report TD-10-12016, Bologna, Italy, November 2010. Google Scholar
  73. [SVD+09]
    D. Sejdinovic, D. Vukobratovic, A. Doufexi, V. Senk, and R. Piechocki. Expanding window fountain codes for unequal error protection. IEEE Trans. Commun., 57(9):2510–2516, 2009. CrossRefGoogle Scholar
  74. [SVN+10]
    C. Stefanovic, D. Vukobratovic, L. Niccolai, F. Chiti, V. Crnojevic, and R. Fantacci. Distributed rateless coding with constrained data gathering in wireless sensor networks. In ACM International Conference on Wireless Communications and Mobile Computing IWCMC 2010, Caen, France, June 2010. [Also available as TD(10)11010]. Google Scholar
  75. [Syk07]
    J. Sykora. Factor graph framework for serially concatenated coded CPM with limiter phase discriminator receiver. In Proc. VTC 2007 Fall—IEEE 66th Vehicular Technology Conf., Baltimore, USA, October 2007. [Also available as TD(07)362]. Google Scholar
  76. [SZM+10]
    F. Sanchez, T. Zemen, G. Matz, F. Kaltenberger, and N. Czink. Cooperative space–time coded OFDM with timing errors and carrier frequency offsets. Technical Report TD-10-12005, Bologna, Italy, November 2010. Google Scholar
  77. [tB00]
    S. ten Brink. Designing iterative decoding schemes with the extrinsic information transfer chart. AEU Int. J. Electron. Commun., 54:389–398, 2000. Google Scholar
  78. [TJC99]
    V. Tarokh, H. Jafarkhani, and A. R. Calderbank. Space–time block codes from orthogonal designs. IEEE Trans. Inform. Theory, 45(5):1456–1467, 1999. MathSciNetMATHCrossRefGoogle Scholar
  79. [TKL05]
    W. G. Teich, P. Kaim, and J. Lindner. Bandwidth and power efficient digital transmission using sets of orthogonal spreading codes. In Proc. 5th International Workshop on Multi-Carrier Spread-Spectrum, Oberpfaffenhofen, Germany, September 2005. [Also available as TD(09)847]. Google Scholar
  80. [TS96]
    W. G. Teich and M. Seidl. Code division multiple access communications: multiuser detection based on a recurrent neural network. In Proc. IEEE 4th International Symposium on Spread Spectrum Techniques and Applications—ISSSTA 1996, Mainz, Germany, 1996. Google Scholar
  81. [VMS02]
    F. Vanhaverbeke, M. Moeneclaey, and H. Sari. Increasing CDMA capacity using multiple orthogonal spreading sequence sets and successive interference cancellation. In Proc. ICC 2002—IEEE Int. Conf. Commun., New York, USA, April 2002. Google Scholar
  82. [VSC+09]
    D. Vukobratovic, C. Stefanovic, V. Crnojevic, F. Chiti, and R. Fantacci. Rateless packet approach for data gathering in wireless sensor networks. IEEE J. Select. Areas Commun., 28(7):1169–1179, 2010. doi: 10.1109/JSAC.2010.100921. [Also available as TD(07)752]. CrossRefGoogle Scholar
  83. [VSS+09]
    D. Vukobratovic, V. Stankovic, D. Sejdinovic, L. Stankovic, and Z. Xiong. Scalable video multicast using expanding window fountain codes. IEEE Trans. Multimedia, 11:1094–1104, 2009. [Also available as TD(07)604]. CrossRefGoogle Scholar
  84. [WDTL08]
    M. Wetz, M. A. Dangl, W. G. Teich, and J. Lindner. Iterative demapping and decoding for OFDM-MFSK. In 13th International OFDM-Workshop, Hamburg, Germany, August 2008. [Also available as TD(08)503]. Google Scholar
  85. [WH10]
    T. Wo and P. A. Hoeher. Superposition mapping with application in bit-interleaved coded modulation. In Proc. SCC 2010—ITG Conference on Source and Channel Coding, Siegen, Germany, January 2010. Google Scholar
  86. [WHTL09]
    M. Wetz, D. Huber, W. G. Teich, and J. Lindner. Robust transmission over frequency selective fast fading channels with noncoherent turbo detection. In Proc. VTC 2009 Fall—IEEE 70th Vehicular Technology Conf., Anchorage, AK, USA, September 2009. [Also available as TD(09)716]. Google Scholar
  87. [WL10]
    J. Wszolek and W. Ludwin. Simulation analysis of the neural network based combined chip and symbol level equalizer. Technical Report TD-10-11094, Aalborg, Denmark, June 2010. Google Scholar
  88. [WLTL10]
    M. Wetz, N. Lux, W. G. Teich, and J. Lindner. Noncoherent iterative multiple symbol detection for OFDM-MFSK. In Proc. 15th International OFDM-Workshop, Hamburg, Germany, September 2010. [Also available as TD(10)11016]. Google Scholar
  89. [WPS09]
    M. Win, P. Pinto, and L. A. Shepp. A mathematical theory of network interference and its applications. Proceedings of the IEEE, 97(2):205–230, 2009. CrossRefGoogle Scholar
  90. [WPTL08]
    M. Wetz, I. Perisa, W. G. Teich, and J. Lindner. Robust transmission over fast fading channels on the basis of OFDM-MFSK. Wireless Personal Communications, 47(1):113–123, 2008. [Also available as TD(07)205]. CrossRefGoogle Scholar
  91. [WS01]
    A. P. Worthen and W. E. Stark. Unified design of iterative receivers using factor graphs. IEEE Trans. Inform. Theory, 47(2):843–849, 2001. CrossRefGoogle Scholar
  92. [WSBM06]
    H. Wymeersch, H. Steendam, H. Bruneel, and M. Moeneclaey. Code-aided frame synchronization and phase ambiguity resolution. IEEE Trans. Signal Processing, 54:2747–2757, 2006. CrossRefGoogle Scholar
  93. [Wsz08]
    J. Wszolek. Application of multilayer perceptron in combined chip and symbol level equalization for downlink WCDMA reception. Technical Report TD-08-665, Lille, France, October 2008. Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Laurent Clavier
    • 1
  • Dejan Vukobratovic
    • 2
  • Matthias Wetz
    • 3
  • Werner Teich
    • 3
  • Andreas Czylwik
    • 4
  • Kimmo Kansanen
    • 5
  1. 1.University of LilleLilleFrance
  2. 2.Faculty of Technical SciencesUniversity of Novi SadNovi SadSerbia
  3. 3.University of UlmUlmGermany
  4. 4.Universität Duisburg-EssenDuisburgGermany
  5. 5.Norwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations