Advertisement

Body Communications

  • Arie Reichman
  • Jun-ichi Takada
  • Dragana Bajić
  • Kamya Y. Yazdandoost
  • Wout Joseph
  • Luc Martens
  • Christophe Roblin
  • Raffaele D’Errico
  • Carla Oliveira
  • Luis M. Correia
  • Matti Hämäläinen
Part of the Signals and Communication Technology book series (SCT)

Abstract

The chapter describes the activity carried out in SIG-E of COST 2100 on body communications. Recent advances in wireless technology have led to the development of Wireless Body Area Networks (WBAN), where a set of communicating devices are located around the human body. In the case of medical applications, these devices are connected to sensors that monitor vital body parameters and movements. The WBAN have been considered not only for the medical and healthcare applications but also for sports and entertainment. WBANs comprise a series of miniature sensor/actuator nodes, each of which has its own energy supply for autonomous operation. The nodes will have enough intelligence to carry out their task and will be able to communicate with other sensor nodes or with a central node worn on the body. For medical applications, the very long battery lifetime is also important. The chapter is organised into three sections. The first section discusses the applications and the requirements of body communications. The second section presents the activity on channel measurements and modelling. Due to the differences of approaches, the section is further divided into three sections, i.e. in-body, on-body, and on-body to off-body. Both static and dynamic channels as well as antenna issues are covered. Finally, the third section addresses the transmission technology. This section introduces existing technologies and describes the contributions in the SIG-E for PHY, MAC and NET layers. Low-power design is also addressed in the section.

Keywords

Medium Access Control Medium Access Control Layer Wireless Body Area Network Packet Error Rate Body Area Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [ABB08]
    I. F. Akyildiz, F. Brunetti, and C. Blazquez. Nanonetworks: a new communication paradigm. Computer Networks, 52(12):2260–2279, 2008. CrossRefGoogle Scholar
  2. [AIK+10]
    T. Aoyagi, Iswandi, M. S. Kim, J. Takada, K. Hamaguchi, and R. Kohno. Study of relation between body motion and channel response of dynamic body area channel. In COST 2100, Aalborg, Denmark, June 2010. [TD(10)11060]. Google Scholar
  3. [Ala98]
    S. M. Alamouti. A simple transmit diversity technique for wireless communications. IEEE J. Select. Areas Commun., 16(8):1451–1458, 1998. CrossRefGoogle Scholar
  4. [ATT+08a]
    T. Aoyagi, J. Takada, K. Takizawa, N. Katayama, T. Kobayashi, K. Y. Yazdandoost, H.-B. Li, and R. Kohno. Channel models for wearable and implantable WBANs. IEEE 802.15 Working Group Document, July 2008. IEEE P802.15-08-0416-02-0006 Google Scholar
  5. [ATT+08b]
    T. Aoyagi, J. Takada, K. Takizawa, H. Sawada, N. Katayama, K. Y. Yazdandoost, T. Kobayashi, H.-B. Li, and R. Kohno. Channel models for WBANs—NICT. IEEE 802.15 Working Group Document, November 2008. IEEE P802.15-08-0416-04-0006. Google Scholar
  6. [BCNT09]
    L. Betancur, N. Cardona, A. Navarro, and L. Traver. A statistical ultra wide band—body area network channel model for body propagation environments. In COST 2100, Valencia, Spain, May 2009. [TD(09)819]. Google Scholar
  7. [BF10]
    A. Baharav and G. D. Furman. Sleepiness on task can be detected using heart rate fluctuations. In 6th Conference of the European Study Group on Cardiovascular Oscillations, April 2010. Google Scholar
  8. [BLT09]
    D. Bajic and T. Loncar-Turukalo. Cardiovascular data transmission: end user experience. In COST 2100, Braunschweig, Germany, February 2009. [TD(09)741]. Google Scholar
  9. [CEN02]
    CENELEC. Basic standard for the calculation and measurement of electromagnetic field strength and SAR related to human exposure from radio base stations and fixed terminal stations for wireless telecommunication systems (110 MHz–40 GHz). Technical Report EN50383, European Committee for Electrotechnical Standardization CENELEC, September 2002. Google Scholar
  10. [CS06]
    S. L. Cotton and W. G. Scanlon. A statistical analysis of indoor multipath fading for a narrowband wireless body area network. In Proc. PIMRC 2006—IEEE 17th Int. Symp. on Pers., Indoor and Mobile Radio Commun., Helsinki, Finland, September 2006. Google Scholar
  11. [CS07a]
    S. L. Cotton and W. G. Scanlon. Characterization and modeling of the indoor radio channel at 868 MHz for a mobile bodyworn wireless personal area network. IEEE Antennas Wireless Propagat. Lett., 6:51–55, 2007. CrossRefGoogle Scholar
  12. [CS07b]
    S. L. Cotton and W. G. Scanlon. A higher order statistics for lognormal small-scale fading in mobile radio channels. IEEE Antennas Wireless Propagat. Lett., 6:540–543, 2007. CrossRefGoogle Scholar
  13. [DO09]
    R. D’Errico and L. Ouvry. Time-variant BAN channel characterization. In Proc. PIMRC 2009—IEEE 20th Int. Symp. on Pers., Indoor and Mobile Radio Commun., Tokyo, Japan, September 2009. [Also available as TD(09)879]. Google Scholar
  14. [DO10a]
    R. D’Errico and L. Ouvry. Analysis and modeling of delay profile in time-variant on-body channels. In COST 2100, Athens, Greece, September 2010. [TD(10)10090]. Google Scholar
  15. [DO10b]
    R. D’Errico and L. Ouvry. Delay dispersion of the on-body dynamic channel. In Proc. EuCAP 2010—4th Euro. Conf. on Antennas and Propagat., Barcelona, Spain, April 2010. [Also available as TD(10)10090]. Google Scholar
  16. [DO11]
    R. D’Errico and L. Ouvry. Doppler characteristics and correlation proprieties of on-body channels. In Proc. EuCAP 2011—European Conf. Antennas Propagat., Rome, Italy, April 2011. [Also available as TD(10)12091]. Google Scholar
  17. [DRHD09]
    J.-M. Dricot, S. Van Roy, F. Horlin, and P. De Doncker. Outage, local throughput, and achievable transmission rate of narrowband body area networks. In COST 2100, Wien, Austria, September 2009. [TD(09)939]. Google Scholar
  18. [DRM11]
    R. D’Errico, R. Rosini, and M. Maman. A performance evaluation of cooperative schemes for on-body area networks based on measured time-variant channels. In Proc. ICC 2011—IEEE Int. Conf. Commun., Kyoto, Japan, June 2011. [Also available as TD(10)11083]. Google Scholar
  19. [Dru07]
    S. Drude. Requirements and application scenarios for body area networks. In Proc. 16th IST Summit on Mobile and Wireless Commun., pages 1–5, July 2007. CrossRefGoogle Scholar
  20. [ECM08]
    ECMA. High rate ultra wideband PHY and MAC standard. ECMA International, 2008. Standard ECMA-368. Google Scholar
  21. [ETS02]
    ETSI. Electromagnetic compatibility and radio spectrum matters (ERM), radio equipment in the frequency range 402 MHz to 405 MHz for ultra low power active medical implants and accessories; part 1: Technical characteristics, including electromagnetic compatibility requirements, and test methods. Technical Report EN 301 839-1, European Telecommunications Standards Institute ETSI, 2002. Google Scholar
  22. [FCC]
    FCC. Fcc: Wireless services: medical device radiocommunications service: Medradio. [Online]. Available: http://wireless.fcc.gov/services/index.htm?job=service_home&id=medical_implant.
  23. [FCC01]
    FCC. Revised supplement C evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields. Technical Report OET Bulletin 65, Federal Communication Commission, Office of Engineering and Technology, 2001. Google Scholar
  24. [FDD+06]
    A. Fort, C. Desset, P. De Doncker, P. Wambacq, and L. Van Biesen. An ultra-wideband body area propagation channel model—from statistics to implementation. IEEE Trans. Microwave Theory Tech., 54(4):1820–1826, 2006. CrossRefGoogle Scholar
  25. [FDR+05]
    A. Fort, C. Desset, J. Ryckaert, P. De Doncker, L. Van Biessen, and S. Donnay. Characterization of the ultra wideband body area propagation channel. In Proc. ICUWB 2005—IEEE Int. Conf. on Ultra-Wideband, Zurich, Switzerland, September 2005. Google Scholar
  26. [FKR+10]
    A. Fort, F. Keshmiri, G. Roqueta, C. Craeye, and C. Oestges. A body area propagation model derived from fundamental principles: analytical analysis and comparison with measurement. IEEE Trans. Antennas Propagat., 58(2):503–514, 2010. CrossRefGoogle Scholar
  27. [FRD+06]
    A. Fort, J. Ryckaert, C. Desset, P. De Doncker, P. Wambacq, and L. Van Biessen. Ultra-wideband channel model for communication around the human body. IEEE J. Select. Areas Commun., 24(4):927–933, 2006. CrossRefGoogle Scholar
  28. [GGS+09]
    J.-M. Gorce, C. Goursaud, C. Savigny, G. Villemaud, R. d’Errico, F. Dehmas, M. Maman, L. Ouvry, B. Miscopein, and J. Schwoerer. Cooperation mechanisms in BANs. In COST 2100, Valencia, Spain, May 2009. [TD(09)862]. Google Scholar
  29. [GKvdM+05]
    J. F. M. Gerrits, M. H. L. Kouwenhoven, P. R. van der Meer, J. R. Farserotu, and J. R. Long. Principles and limitations of ultra-wideband FM communications systems. EURASIP J. Applied Signal Processing, 2005(3):382–396, 2005. MATHCrossRefGoogle Scholar
  30. [GLP+03]
    S. K. S. Gupta, S. Lalwani, Y. Prakash, E. Elsharawy, and L. Schwiebert. Towards a propagation model for wireless biomedical applications. In Proc. ICC 2003—IEEE Int. Conf. Commun., vol. 3, pages 1993–1997, June 2003. Google Scholar
  31. [GVH+06]
    B. Gyselinckx, R. Vullers, C. Van Hoof, J. Ryckaert, R. F. Yazicioglu, P. Fiorini, and V. Leonov. Human++: emerging technology for body area networks. In Proc. of IFIP International Conference on Very Large Scale Integration, pages 175–180, October 2006. CrossRefGoogle Scholar
  32. [HDS+10]
    G. Hiertz, D. Denteneer, L. Stibor, Y. Zang, X. P. Costa, and B. Walke. The IEEE 802.11 universe. IEEE Commun. Mag., 48(1):62–70, 2010. CrossRefGoogle Scholar
  33. [HH06]
    P. S. Hall and Y. Hao, editors. Antennas and Propagation for Body-Centric Wireless Communications. Artech House, Norwood, MA, USA, 2006. Google Scholar
  34. [HHN+07]
    P. S. Hall, Y. Hao, Y. I. Nechayev, A. Alomalny, C. C. Constantinou, C. Parin, M. R. Kamarudin, T. Z. Salim, D. T. M. Hee, R. Dubrovka, A. S. Owadally, W. Song, A. Serra, P. Nepa, M. Gallo and M. Bozzetti. Antennas and propagation for on-body communication systems. IEEE Antennas Propagat. Mag., 49(3):41–58, 2007. CrossRefGoogle Scholar
  35. [HRG+09]
    J. Haapola, A. Rabbachin, L. Goratti, C. Pomalaza-Ráez, and I. Oppermann. Effect of impulse radio-ultra wideband based on energy collection on MAC protocol performance. IEEE Trans. Veh. Technol., 58(9):4491–4506, 2009. CrossRefGoogle Scholar
  36. [IEE03]
    IEEE Computer Society. Wireless medium access control (MAC) and physical layer (PHY) specifications for high rate wireless personal area networks (WPANs). IEEE Standard for Information Technology, 2003. IEEE Std 802.15.3-2003. Google Scholar
  37. [IEE05]
    IEEE Computer Society. Wireless medium access control (MAC) and physical layer (PHY) specifications for wireless personal area networks (WPANs). IEEE Standard for Information Technology, 2005. IEEE Std 802.15.1-2005. Google Scholar
  38. [IEE06]
    IEEE Computer Society. Wireless medium access control (MAC) and physical layer (PHY) specifications for low rate wireless personal area networks (WPANs). IEEE Standard for Information Technology, 2006. IEEE Std 802.15.4-2006. Google Scholar
  39. [Jov05]
    E. Jovanov. Wireless technology and system integration in body area networks for m-health applications. In Proc. of 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pages 7158–7160, September 2005. Google Scholar
  40. [JRVM09]
    W. Joseph, E. Reusens, G. Vermeeren, and L. Martens. Experimental determination of on-body channel for two humans in multipath environment. In COST 2100, Braunschweig, Germany, February 2009. [TD(09)702]. Google Scholar
  41. [KCPW08]
    N.-G. Kang, C. Cho, S.-H. Park, and E. T. Won. Channel models for WBANs—Samsung Electronics. IEEE 802.15 Working Group Document, November 2008. IEEE P802.15-08-0781-00-0006. Google Scholar
  42. [KGT+10]
    L. Kynsijärvi, L. Goratti, R. Tesi, J. Iinatti, and M. Hämäläinen. Design and performance of contention based MAC protocols in WBAN for medical ICT using IR-UWB. In Proceedings of Body Area Networks-Enabling Technologies for Wearable and Implantable Body Sensors (BAN2010), Istanbul, Turkey, September 2010. [Also available as TD(10)11056]. Google Scholar
  43. [KJVM10]
    D. Kurup, W. Joseph, G. Vermeeren, and L. Martens. In-body path loss model for homogeneous human tissues. In COST 2100, Aalborg, Denmark, June 2010. TD(10)11017 (presented as TD(10)12023 in Bologna, Italy). Google Scholar
  44. [KP10]
    E. Karapistoli and F.-N. Pavlidou. An overview of the IEEE 802.15.4a standard. IEEE Commun. Mag., 48(1):47–53, 2010. CrossRefGoogle Scholar
  45. [KSOW81]
    R. W. P. King, G. S. Smith, M. Owens, and T. T. Wu. Antennas in Matter Fundamentals, Theory and Applications. MIT Press, Cambridge, 1981. Google Scholar
  46. [KT10]
    M. S. Kim and J. Takada. Statistical characterization of 4.5 GHz narrowband on-body propagation channel. In COST 2100, Athens, Greece, February 2010. [TD(10)10031]. Google Scholar
  47. [KTM+08]
    M. S. Kim, J. Takada, L. Materum, T. Kan, Y. Terao, Y. Konishi, K. Nakai, and T. Aoyagi. Statistical property of dynamic BAN channel gain at 4.5 GHz. IEEE 802.15 Working Group Document, July 2008. IEEE P802.15-08-0489-00-0006. Google Scholar
  48. [KW10]
    R. Kohno and E. T. Won. WiBAN-SMA merger announcement. IEEE 802.15 Working Group Document, March 2010. IEEE P802.15-10-0215-02-0006. Google Scholar
  49. [LDO08a]
    L. Liu, P. De Doncker, and C. Oestges. Fading correlation analysis for front abdomen propagation in body area networks. In COST 2100, Trondheim, Norway, June 2008. [TD(08)522]. Google Scholar
  50. [LDO08b]
    L. Liu, P. De Doncker, and C. Oestges. Fading correlation measurement and modeling on the front and back side of a human body. In COST 2100, Lille, France, October 2008. [TD(08)642]. Google Scholar
  51. [LDO09a]
    L. Liu, P. De Doncker, and C. Oestges. Fading correlation measurement and modeling on the front side of a human body. In Proc. EuCAP 2009—European Conf. Antennas Propagat., pages 969–973, March 2009. [Also available as TD(08)522]. Google Scholar
  52. [LDO09b]
    L. Liu, P. De Doncker, and C. Oestges. Time-variant on-body channel fading characterization and modelling with dynamic human body. In COST 2100, Wien, Austria, September 2009. [TD(09)919]. Google Scholar
  53. [LKC+11]
    L. Liu, F. Keshmiri, C. Craeye, P. De Doncker, and C. Oestges. An analytical modeling of polarized time-variant on-body propagation channels with dynamic body scattering. EURASIP J. Wireless Commun. Networking, 2011, Article ID 362521, 2011. doi: 10.1155/2011/362521. CrossRefGoogle Scholar
  54. [LKD+10a]
    L. Liu, F. Keshmiri, P. De Doncker, C. Craeye, and C. Oestges. 3-d body scattering interference to vertically polarized on-body propagation. In Proc. AP-S 2010—IEEE Antennas Propagat. Soc. Int. Symp., Ontario, Canada, June 2010. [Also available as TD(10)11013]. Google Scholar
  55. [LKD+10b]
    L. Liu, F. Keshmiri, P. De Doncker, C. Craeye, and C. Oestges. 3-D body scattering interference to on-body propagation with polarized point source. In COST 2100, Aalborg, Denmark, June 2010. [TD(10)11013]. Google Scholar
  56. [LRDO09]
    L. Liu, S. V. Roy, P. De Doncker, and C. Oestges. Azimuth radiation pattern characterization of omnidirectional antennas near a human body. In Proc. ICEAA 2009—Int. Conf. Electromag. in Advanced Appl., Torino, Italy, September 2009. Google Scholar
  57. [MBC+07]
    A. F. Molisch, K. Balakrishnan, C.-C. Chong, S. Emami, A. Fort, J. Karedal, J. Kunisch, H. Schantz, U. Schuster, and K. Siwiak. IEEE 802.15.4a channel model—final report. IEEE 802.15 Working Group Document, October 2007. IEEE P802.15-04-0662-04-004a. Google Scholar
  58. [MC10]
    M. Mackowiak and L. M. Correia. A statistical approach to model antenna radiation patterns in off-body radio channels. In Proc. PIMRC 2010—IEEE 21st Int. Symp. on Pers., Indoor and Mobile Radio Commun., Istanbul, Turkey, September 2010. [Also available as TD(10)10041]. Google Scholar
  59. [MCC+06]
    A. F. Molisch, D. Cassioli, C. Chong, S. Emami, A. Fort, A. Kannan, J. Karedal, J. Kunish, and H. G. Schantz. A comprehensive standardized model for ultrawideband propagation channels. IEEE Trans. Antennas Propagat., 54(11):3151–3165, 2006. CrossRefGoogle Scholar
  60. [MHS+08]
    D. Miniutti, L. Hanlen, D. Smith, A. Zhang, D. Lewis, D. Rodda, and B. Gilbert. Narrowband channel characterization for body area networks. IEEE 802.15 Working Group Document, July 2008. IEEE P802.15-08-0421-00-0006. Google Scholar
  61. [MOLC10]
    M. Mackowiak, C. Oliveira, C. Lopes, and L. M. Correia. A statistical analysis of the influence of the human body on the radiation pattern of wearable antennas. In COST 2100, Bologna, Italy, November 2010. [TD(10)12041]. Google Scholar
  62. [MVB10a]
    F. Martelli, R. Verdone, and C. Buratti. Link adaptation in IEEE 802.15.4-based wireless body area networks. In Proc. PIMRC 2010—IEEE 21st Int. Symp. on Pers., Indoor and Mobile Radio Commun., Istanbul, Turkey, September 2010. Google Scholar
  63. [MVB10b]
    F. Martelli, R. Verdone, and C. Buratti. Link adaptation in wireless body area networks. In COST 2100, Bologna, Italy, November 2010. [TD(10)12043]. Google Scholar
  64. [OC08]
    C. Oliveira and L. M. Correia. Exploiting the use of MIMO in body area networks. In COST 2100, Trondheim, Norway, June 2008. [TD(08)543]. Google Scholar
  65. [OC10]
    C. Oliveira and L. M. Correia. A statistical model to characterize user influence in body area networks. In COST 2100, Athens, Greece, February 2010. [TD(10)10091]. Google Scholar
  66. [OLMC10]
    C. Oliveira, C. Lopes, M. Mackowiack, and L. M. Correia. Characterisation of on-body communications at 2.45 GHz. In COST 2100, Bologna, Italy, November 2010. [TD(10)12069]. Google Scholar
  67. [otESoCtNASoPE04]
    Task Force of the European Society of Cardiology, the North American Society of Pacing, and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation, 93(5):1043–1065, 2004. Google Scholar
  68. [PKaAP+07]
    C. S. Pattichis, E. C. Kyriacou, M. S. Pattichis, A. Panayides, S. Mougiakakou, A. Pitsillides, and C. N. Schizas. A brief overview of m-health e-emergency systems. In Proc. of 6th International Special Topic Conference on ITAB, pages 53–57, September 2007. Google Scholar
  69. [Pro]
    FP7 Project. WiserBAN—smart miniature low-power wireless microsystem for body area networks. http://www.wiserban.eu/. [Page available at April 16, 2011].
  70. [RDG+09]
    C. Roblin, R. D’Errico, J. M. Gorce, J. M. Laheurte, and L. Ouvry. Propagation channel models for BANs: an overview. In COST 2100, Braunschweig, Germany, February 2009. [TD(09)760]. Google Scholar
  71. [RDM+04]
    J. Ryckaert, P. De Doncker, R. Meys, A. de Le Hoye, and S. Donnay. Channel model for wireless communication around human body. Elect. Lett., 40(9):543–544, 2004. CrossRefGoogle Scholar
  72. [Rei09]
    A. Reichman. Body area networks: applications and challenges. In COST 2100, Braunschweig, Germany, February 2009. [TD(09)717]. Google Scholar
  73. [Rei10]
    A. Reichman. UWB PHY for body area networks. In COST 2100, Aalborg, Denmark, June 2010. [TD(10)11018]. Google Scholar
  74. [RFCO07]
    G. Roqueta, A. Fort, C. Craeye, and C. Oestges. Analytical propagation models for body area networks. In IET Seminar on Antennas and Propagat. for Body-Centric Wireless Commun., vol. 24, pages 90–96, April 2007. Google Scholar
  75. [RM10]
    C. Roblin and N. Malkiya. Parametric and statistical analysis of UWB BAN channel measurements. In COST 2100, Athens, Greece, September 2010. [TD(10)10098]. Google Scholar
  76. [Rob10]
    C. Roblin. Parametric modeling of antennas influence on the path loss for UWB on-body WBAN scenarios. In COST 2100, Bologna, Italy, November 2010. [TD(10)12093]. Google Scholar
  77. [ROHD07]
    S. V. Roym, C. Oestges, F. Horlinm, and P. De Doncker. On-body propagation velocity estimation using ultra-wideband frequency-domain spatial correlation analysis. Elect. Lett., 43(25):1405–1406, 2007. CrossRefGoogle Scholar
  78. [SBV09]
    A. Sanchez, C. Buratti, and R. Verdone. Performance analysis of body communication networks based on IEEE 802.15.4 with star topologies. In COST 2100, Valencia, Spain, May 2009. [TD(09)880]. Google Scholar
  79. [SHM+08]
    J. Song, S. Han, A. K. Mok, D. Chen, M. Lucas, and M. Nixon. WirelessHART: Applying wireless technology in real-time industrial process control. In Proc. RTAS ’08—IEEE Real-Time and Embedded Tech. and Appl. Symp., St. Louis, MO, USA, 2008. Google Scholar
  80. [SIG09]
    Bluetooth SIG. Bluetooth specification version 4.0. Bluetooth SIG Standard, 2009. Google Scholar
  81. [SPYH+09]
    K. Sayrafian-Pour, W. B. Yang, J. Hagedorn, J. Terrill, and K. Y. Yazdandoost. A statistical path loss model for medical implant communication channels. In Proc. PIMRC 2009—IEEE 20th Int. Symp. on Pers., Indoor and Mobile Radio Commun., pages 2995–2999, September 2009. [Also available as TD(10)12008]. Google Scholar
  82. [SZKT04]
    N. C. Sagias, D. A. Zogas, G. K. Karagiannidis, and G. S. Tombras. Channel capacity and second-order statistics in Weibull fading. IEEE Commun. Lett., 8(6):377–379, 2004. CrossRefGoogle Scholar
  83. [Tak08]
    J. Takada. Static propagation and channel models in body area. In COST 2100, Lille, France, October 2008. [TD(08)639]. Google Scholar
  84. [TCAB10]
    W. Thompson, R. Cepeda, S. Armour, and M. Beach. Improved antenna mounting method for UWB BAN channel measurement. In COST 2100, Aalborg, Denmark, June 2010. [TD(10)11048]. Google Scholar
  85. [TPRI+]
    A. Taparugssanagorn, C. Pomalaza-Raez, A. Isola, R. Tesi, M. Hämäläinen, and J. Iinatti. Preliminary UWB channel study for wireless body area networks in medical applications. International Journal of Ultra Wideband Communications and Systems (IJUWBCS), 2(1):14–22, 2011. CrossRefGoogle Scholar
  86. [TRV+09]
    P. Van Torre, H. Rogier, L. Vallozzi, C. Hertleer, and M. Moeneclaey. Application of channel models to indoor off-body wireless MIMO communication with textile antennas. In COST 2100, Vienna, Austria, September 2009. [TD(09)963]. Google Scholar
  87. [TTJI09]
    R. Tesi, A. Taparugssanagorn, M. Hämäläinen, and J. Iinatti. UWB channel measurements for wireless body area networks. In COST 2100, Lille, France, October 2009. [TD(08)649]. Google Scholar
  88. [TTT+09]
    L. Traver, C. Tarin, D. Toledano, C. Roblin, A. Sibille, and N. Cardona. Head to body UWB-BAN channel measurements. In COST 2100, Valencia, Spain, May 2009. [TD(09)816]. Google Scholar
  89. [TVH+]
    P. Van Torre, L. Vallozzi, C. Hertleer, H. Rogier, M. Moeneclaey, and J. Verhaevert. Indoor off-body wireless MIMO communication with dual polarized textile antennas. IEEE Trans. Antennas Propagat., 59(2):631–642, 2011. CrossRefGoogle Scholar
  90. [VHI10a]
    H. Viittala, M. Hämäläinen, and J. Iinatti. Impact of difference in WBAN channel models on UWB system performance. In Proc. ISSSTA 2010—11th Int. Symp. on Spread Spectrum Tech. Appl., pages 175–180, October 2010. CrossRefGoogle Scholar
  91. [VHI10b]
    H. Viittala, M. Hämäläinen, and J. Iinatti. UWB system performance in two different WBAN channels. In COST 2100, Athens, Greece, February 2010. [TD(10)10032]. Google Scholar
  92. [VHIT09]
    H. Viittala, M. Hämäläinen, J. Iinatti, and A. Taparugssanagorn. Different experimental WBAN channel models and IEEE 802.15.6 models: comparison and effects. In Proc. ISABEL 2009—2nd Int. Symp. on Appl. Sci. in Biomed. and Commun. Tech., Bratislava, Slovakia, 2009. Google Scholar
  93. [VTH+10]
    L. Vallozzi, P. Van Torre, C. Hertleer, H. Rogier, M. Moeneclaey, and J. Verhaevert. Wireless communication for firefighters using dual-polarized textile antennas integrated in their garment. IEEE Trans. Antennas Propagat., 58(4):1357–1368, 2010. [Also available as TD(09)963]. CrossRefGoogle Scholar
  94. [Wal06]
    J. Walko. Home control. Computing Control Engineering Journal, 17(5):16–19, 2006. CrossRefGoogle Scholar
  95. [Whe07]
    A. Wheeler. Commercial applications of wireless sensor networks using ZigBee. IEEE Commun. Mag., 45(4):70–77, 2007. CrossRefGoogle Scholar
  96. [Wir]
    P. Wireless. HomeRF: overview and market positioning. http://www.palowireless.com/homerf/homerf.asp. [Page available at March 2, 2010].
  97. [YH09]
    K. Y. Yazdandoost and K. Hamaguchi. Channel models for implant communications. In COST 2100, Vienna, Austria, September 2009. [TD(09)904]. Google Scholar
  98. [YH10]
    K. Y. Yazdandoost and K. Hamaguchi. Antennas for body area network communications. In COST 2100, Athens, Greece, February 2010. [TD(10)002]. Google Scholar
  99. [YHSP+10]
    K.Y. Yazdandoost, K. Hamaguchi, K. Sayrafian-Pour, W. B. Yang, J. Hagedorn, and J. Terrill. Study of on-body propagation using a 3D virtual reality platform. In COST 2100, Bologna, Italy, November 2010. [TD(10)12008]. Google Scholar
  100. [YK07]
    K. Y. Yazdandoost and R. Kohno. An antenna for medical implant communications system. In Proc. EuMC 2007—European Microwave Conf., pages 968–971, October 2007. CrossRefGoogle Scholar
  101. [YK09]
    K. Y. Yazdandoost and R. Kohno. An antenna for medical implant communications system. In COST 2100, Valencia, Spain, May 2009. [TD(09)808]. Google Scholar
  102. [YSP10]
    K. Y. Yazdandoost and K. Sayrafian-Pour. Channel model for body area network (BAN). IEEE 802.15 Working Group Document, November 2010. IEEE P802.15-08-0780-12-0006. Google Scholar
  103. [YTA+09]
    K. Y. Yazdandoost, K. Takizawa, T. Aoyagi, J. Takada, and R. Kohno. An overview of NICT’s channel model planning for wireless body area network. In COST 2100, Braunschweig, Germany, February 2009. [TD(09)754]. Google Scholar
  104. [ZAS+03]
    T. Zasowski, F. Althaus, M. Stäger, A. Wittneben, and G. Tröster. UWB for noninvasive wireless body area networks: channel measurements and results. In Proc. UWBST 2nd IEEE Conf. on Ultra Wideband Systems and Tech., Reston, VA, USA, November 2003. Google Scholar
  105. [Zim96]
    T. G. Zimmerman. Personal area networks (PAN): near-field intra-body communication. IBM Systems J., 35(3–4):609–617, 1996. CrossRefGoogle Scholar
  106. [ZLK07]
    B. Zhen, H.-B. Li, and R. Kohno. IEEE body area networks for medical applications. In Proc. of 4th IEEE Int. Symp. on Wireless Comm. Systems, pages 327–331, October 2007. CrossRefGoogle Scholar
  107. [ZMAW05]
    T. Zasowski, G. Meyer, F. Althaus, and A. Wittneben. Propagation effects in UWB body area networks. In Proc. ICUWB 2005—IEEE Int. Conf. on Ultra-Wideband, Zurich, Switzerland, September 2005. Google Scholar
  108. [ZMAW06]
    T. Zasowski, G. Meyer, F. Althaus, and A. Wittneben. UWB signal propagation at the human head. IEEE Trans. Microwave Theory Tech., 54(4):1836–1845, 2006. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Arie Reichman
    • 1
  • Jun-ichi Takada
    • 2
  • Dragana Bajić
    • 3
  • Kamya Y. Yazdandoost
    • 5
  • Wout Joseph
    • 4
  • Luc Martens
    • 4
  • Christophe Roblin
    • 6
  • Raffaele D’Errico
    • 7
  • Carla Oliveira
    • 8
  • Luis M. Correia
    • 8
  • Matti Hämäläinen
    • 9
  1. 1.Ruppin Academic CenterKfar SabaIsrael
  2. 2.Tokyo Institute of TechnologyTokyoJapan
  3. 3.University of Novi SadNovi SadSerbia
  4. 4.Ghent UniversityGhentBelgium
  5. 5.National Institute of Information and Communications TechnologyKanagawaJapan
  6. 6.ENSTA Paris-TechParisFrance
  7. 7.CEA-LETIGrenobleFrance
  8. 8.Istituto Superior Técnico (IST)Universidade Técnica de LisboaLisbonPortugal
  9. 9.CWCUniversity of OuluOuluFinland

Personalised recommendations