Complex Dynamical Behavior in Bio-economic Prey-Predator Models with Competition for Prey

Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 421)

Introduction

In recent years, harvesting in the prey-predator ecosystem is one of the most important fields of interest. Much research effort [1, 3, 2, 14, 11, 16, 5, 6, 8] has been put into investigating the interaction and coexistence mechanism of the harvested prey-predator ecosystem. A numerical analysis of a harvested prey-predator model is performed in [1], and the model can be expressed as follows:

$$ \left\{ \begin{array} {l} \dot{x}_1(t)=x_1(t)(\epsilon_1-a_{11}x_1(t)-a_{12}x_2(t)-a_{13}y(t)), \\ \dot{x}_2(t)=x_2(t)(\epsilon_2-a_{21}x_1(t)-a_{22}x_2(t)-a_{23}y(t)), \\ \dot{y}(t)=y(t)(-\epsilon_3+a_{31}x_1(t)+a_{32}x_2(t))-H(t), \end{array} \right. (13.1) $$

where x 1(t) and x 2(t) denote populations of the prey 1 and prey 2, respectively; y(t) represents population of the predator; ε i (i = 1,2,3) are intrinsic rates of growth and decay of the three species; a ij (i,j = 1,2,3) with i ≠ j are the inter-species and a ii (i = 1,2) are the intra-species coefficients of competitive interactions; a 13 and a 23 are the coefficients for the loss of prey 1 and prey 2, respectively; a 31 and a 32 are the coefficients for growth in the predator as a result of consumption of prey by them; and H(t) is a harvest function, which represents harvesting strategies applied to the predator.

Keywords

Librium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Azar, C., Holmberg, J., Lindgren, K.: Stability analysis of harvesting in a predator-prey model. J. Theo. Bio. 174, 13–19 (1995)CrossRefGoogle Scholar
  2. 2.
    Costa, M.I.S., Kaszkurewicz, E., Bhaya, A., Hsu, L.: Achieving global convergence to an equilibrium population in predator-prey systems by the use of a discontinuous harvesting policy. Ecol. Model 128, 89–99 (2000)CrossRefGoogle Scholar
  3. 3.
    Dai, G.R., Tang, M.X.: Coexistence region and global dynamics of a harvested predator-prey system. SIAM J. Appl. Math. 58(1), 193–210 (1998)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Dai, L.: Singular Control System. Springer, New York (1989)CrossRefGoogle Scholar
  5. 5.
    Edwards, H.J., Dytham, C., Pitchford, J.W., Righton, D.: Prey selection, vertical migrations and the impacts of harvesting upon the population dynamics of a predator-prey system. Bull. Mathe. Biol. 69, 1827–1846 (2007)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Gakkhar, S., Singh, B.: The dynamics of a food web consisting of two preys and a harvesting predator. Chaos Soli. Frac. 34(4), 1346–1356 (2007)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Gordon, H.S.: The economic theory of a common property resource: The fishery. J. Polit. Econ. 62(2), 124–142 (1954)CrossRefGoogle Scholar
  8. 8.
    Kar, T.K., Matsuda, H.: Controllability of a harvested prey-predator with time delay. J. Biol. Syst. 14(2), 243–254 (2006)MATHCrossRefGoogle Scholar
  9. 9.
    Kot, M.: Elements of Mathematical Biology. Cambridge Press, Cambridge (2001)Google Scholar
  10. 10.
    Kumar, S., Srivastava, S.K., Chingakham, P.: Hopf bifurcation and stability analysis in a harvested one-predator-two-prey model. Appl. Math. Comp. 129, 107–118 (2002)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Liu, B., Zhang, Y.J., Chen, L.S.: Dynamic complexities in a Lotka-Volterra predator-prey model concerning impulsive control strategy. Int. J. Bifur. Chao. 15(2), 517–531 (2005)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Liu, C., Zhang, Q.L., Zhang, Y., Duan, X.D.: Bifurcation and control in a differential-algebraic harvested prey-predator model with stage structure for predator. Int. J. Bifur. Chaos. 18(10), 3159–3168 (2008)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Liu, Z., Yuan, R.: Stability and bifurcation in a harvested one-predator-two-prey model with delays. Chaos Soli. Frac. 27, 1395–1407 (2006)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Martin, A., Ruan, S.G.: Predator-prey models with delay and prey harvesting. J. Math. Biol. 43(3), 247–267 (2001)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Venkatasubramanian, V., Schaettler, H., Zaborszky, J.: Local bifurcations and feasibility regions in differential-algebraic systems. IEEE Trans. Auto. Contr. 40(12), 1992–2013 (1995)MATHCrossRefGoogle Scholar
  16. 16.
    Zhang, H., Georgescu, P., Chen, L.S.: An impulsive predator-prey system with Beddington-DeAngelis functional response and time delays. Int. J. Bio. 1(1), 1–17 (2008)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Zhang, X., Zhang, Q.L., Zhang, Y.: Bifurcations of a class of singular biological economic models. Chaos Soli. Frac. 42(3), 1485–1494 (2009)MATHCrossRefGoogle Scholar
  18. 18.
    Zhang, Y., Zhang, Q.L.: Chaotic control based on descriptor bioeconomic systems. Contr. Deci. 22(4), 445–452 (2007) (in Chinese) Google Scholar
  19. 19.
    Zhang, Y., Zhang, Q.L., Zhao, L.C.: Bifurcations and control in singular biological economical model with stage structure. J. Syst. Engi. 22(3), 232–238 (2007) (in Chinese) Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.College of SciencesNortheastern UniversityShenyangChina, People’s Republic

Personalised recommendations