Advertisement

Error Augmentation and the Role of Sensory Feedback

  • James L. Patton
  • Felix C. Huang
Chapter

Abstract

Brain injury often results a partial loss of the neural resources communicating to the periphery that controls movements. Consequently, the prior signals may no longer be appropriate for getting the muscles to do what is needed – a new pattern needs to be learned that appropriately uses the residual resources. Such learning may not be too different from the learning of skills in sports, music performance, surgery, teleoperation, piloting, and child development. Our lab has leveraged what we know about neural adaptation and engineering control theory to develop and test new interactive environments that enhance learning (or relearning). One successful application is the use of robotics and video feedback technology to augment error signals, which tests standing hypotheses about error-mediated neuroplasticity and illustrates an exciting prospect for rehabilitation environments of tomorrow.

Keywords

Learning Motor control Movement Human Rehabilitation Adaptation Training Feedforward control 

Notes

Acknowledgments

This work was supported by American Heart Association 0330411Z, NIH R24 HD39627, NIH5 R01 NS 35673, NIH F32HD08658, Whitaker RG010157, NSF BES0238442, NIH R01HD053727, NIDRR H133E0700 13 the Summer Internship in Neural Engi­neering (SINE) program at the Sensory Motor Performance Program at the Rehabilitation Institute of Chicago, and the Falk Trust. For additional information see www.SMPP.northwestern.edu/RobotLab.

References

  1. 1.
    Hollerbach JM, Flash T. Dynamic interactions between limb segments during planar arm movements. Biol Cybern. 1982;44:67–77.PubMedCrossRefGoogle Scholar
  2. 2.
    Hogan N. Mechanical impedance of single and multi-articular systems. In: Winters JM, Woo SL-Y, editors. Multiple muscle systems. New York: Springer; 1990. p. 149–64.CrossRefGoogle Scholar
  3. 3.
    Zajac FE. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. CRC Crit Rev Bioeng. 1989;17:359–411.Google Scholar
  4. 4.
    Ghez C. The control of movement. In: Kandel ER, Scwartz JH, Jessel TM, editors. Principles of neural science. New York: Elsevier; 1991. p. 533–47.Google Scholar
  5. 5.
    Bock O. Load compensation in human goal-directed arm movements. Behav Brain Res. 1990;41:167–77.PubMedCrossRefGoogle Scholar
  6. 6.
    Lackner JR, DiZio P. Rapid adaptation to Coriolis force perturbations of arm trajectories. J Neurophysiol. 1994;72:299–313.PubMedGoogle Scholar
  7. 7.
    Sainburg RL, Ghez C, Kalakanis D. Intersegmental dynamics are controlled by sequential anticipatory, error correction, and postural mechanisms. J Neurophysiol. 1999;81(3):1045–56.PubMedGoogle Scholar
  8. 8.
    Shadmehr R, Mussa-Ivaldi FA. Adaptive representation of dynamics during learning of a motor task. J Neurosci. 1994;14(5):3208–24.PubMedGoogle Scholar
  9. 9.
    Tee KP, Franklin DW, Kawato M, Milner TE, Burdet E. Concurrent adaptation of force and impedance in the redundant muscle system. Biol Cybern. 2010;102(1):31–44.PubMedCrossRefGoogle Scholar
  10. 10.
    Franklin DW, So U, Kawato M, Milner TE. Impedance control balances stability with metabolically costly muscle activation. J Neurophysiol. 2004;92(5):3097–105.PubMedCrossRefGoogle Scholar
  11. 11.
    Osu R, Burdet E, Franklin DW, Milner TE, Kawato M. Different mechanisms involved in adaptation to stable and unstable dynamics. J Neurophysiol. 2003;90(5):3255–69.PubMedCrossRefGoogle Scholar
  12. 12.
    Thoroughman KA, Shadmehr R. Electromyographic correlates of learning an internal model of reaching movements. J Neurosci. 1999;19(19):8573–88.PubMedGoogle Scholar
  13. 13.
    Mussa-Ivaldi FA, Patton JL. Robots can teach people how to move their arm. Paper presented at: IEEE international conference on robotics and automation (ICRA). San Francisco; 2000.Google Scholar
  14. 14.
    Patton JL, Mussa-Ivaldi FA. Robot-assisted adaptive training: custom force fields for teaching movement patterns. IEEE Trans Biomed Eng. 2004;51(4):636–46.PubMedCrossRefGoogle Scholar
  15. 15.
    Kawato M. Feedback-error-learning neural network for supervised learning. In: Eckmiller R, editor. Advanced neural computers. Amsterdam: North-Holland; 1990. p. 365–72.Google Scholar
  16. 16.
    Wolpert DM, Ghahramani Z, Jordan MI. An internal model for sensorimotor integration. Science. 1995;269(5232):1880–2.PubMedCrossRefGoogle Scholar
  17. 17.
    Flanagan JR, Rao AK. Trajectory adaptation to a nonlinear visuomotor transformation: evidence of motion planning in visually perceived space. J Neurophysiol. 1995;74(5):2174–8.PubMedGoogle Scholar
  18. 18.
    Scheidt RA, Reinkensmeyer DJ, Conditt MA, Rymer WZ, Mussa-Ivaldi FA. Persistence of motor adaptation during constrained, multi-joint, arm movements. J Neurophysiol. 2000;84(2):853–62.PubMedGoogle Scholar
  19. 19.
    Patton JL, Kovic M, Mussa-Ivaldi FA. Custom-designed haptic training for restoring reaching ability to individuals with stroke. J Rehabil Res Dev. 2006;43(5):643–56.PubMedCrossRefGoogle Scholar
  20. 20.
    Patton JL, Stoykov ME, Kovic M, Mussa-Ivaldi FA. Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Exp Brain Res. 2006;168(3):368–83.PubMedCrossRefGoogle Scholar
  21. 21.
    Emken JL, Reinkensmeyer DJ. Robot-enhanced motor learning: accelerating internal model formation during locomotion by transient dynamic amplification. IEEE Trans Neural Syst Rehabil Eng. 2005;13(1):33–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Scheidt RA, Dingwell JB, Mussa-Ivaldi FA. Learning to move amid uncertainty. J Neurophysiol. 2001;86(2):971–85.PubMedGoogle Scholar
  23. 23.
    Harris C. Perceptual adaptation to inverted, reversed, and displaced vision. Psychol Rev. 1965;72:419–44.PubMedCrossRefGoogle Scholar
  24. 24.
    Imamizu H, Miyauchi S, Tamada T, et al. Human cerebellar activity reflecting an acquired internal model of a new tool [see comments]. Nature. 2000;403(6766):192–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Krakauer JW, Pine ZM, Ghilardi MF, Ghez C. Learning of visuomotor transformations for vectorial planning of reaching trajectories. J Neurosci. 2000;20(23):8916–24.PubMedGoogle Scholar
  26. 26.
    Rossetti Y, Rode G, Pisella L, et al. Prism adaptation to a rightward optical deviation rehabilitates left hemispatial neglect. Nature. 1998;395(6698):166–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Shadmehr R, Holcomb HH. Neural correlates of motor memory consolidation. Science. 1997;277:821–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Krakauer JW, Ghilardi MF, Ghez C. Independent learning of internal models for kinematic and dynamic control of reaching. Nat Neurosci. 1999;2(11):1026–31.PubMedCrossRefGoogle Scholar
  29. 29.
    Tong C, Wolpert DM, Flanagan JR. Kinematics and dynamics are not represented independently in motor working memory: evidence from an interference study. J Neurosci. 2002;22(3):1108–13.PubMedGoogle Scholar
  30. 30.
    Shadmehr R, Brashers-Krug T. Functional stages in the formation of human long-term motor memory. J Neurosci. 1997;17(1):409–19.PubMedGoogle Scholar
  31. 31.
    Brashers-Krug T, Shadmehr R, Bizzi E. Consolidation in human motor memory. Nature. 1996;382(6588):252–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Weiner MJ, Hallett M, Funkenstein HH. Adaptation to lateral displacement of vision in patients with lesions of the central nervous system. Neurology. 1983;33(6):766–72.PubMedCrossRefGoogle Scholar
  33. 33.
    Dancause N, Ptitob A, Levin MF. Error correction strategies for motor behavior after unilateral brain damage: short-term motor learning processes. Neuropsychologia. 2002;40(8):1313–23.PubMedCrossRefGoogle Scholar
  34. 34.
    Takahashi CG, Reinkensmeyer DJ. Hemiparetic stroke impairs anticipatory control of arm movement. Exp Brain Res. 2003;149:131–40.PubMedGoogle Scholar
  35. 35.
    Beer RF, Given JD, Dewald JPA. Task-dependent weakness at the elbow in patients with hemiparesis. Arch Phys Med Rehabil. 1999;80:766–72.PubMedCrossRefGoogle Scholar
  36. 36.
    Wolf SL, Lecraw DE, Barton LA, Jann BB. Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among stroke and head-injured patients. Exp Neurol. 1989;104:125–32.PubMedCrossRefGoogle Scholar
  37. 37.
    Flanagan J, Nakano E, Imamizu H, Osu R, Yoshioka T, Kawato M. Composition and decomposition of internal models in motor learning under altered kinematic and dynamic environments. J Neurosci. 1999;19(31–35):RC34.PubMedGoogle Scholar
  38. 38.
    Wei Y, Patton J. Forces that supplement visuomotor learning: a ‘sensory crossover’ experiment. Paper presented at: Symposium on haptic interfaces, a satellite to the IEEE conference on virtual reality. Chicago; 2004Google Scholar
  39. 39.
    Chib VS, Patton JL, Lynch KM, Mussa-Ivaldi FA. The effect of stiffness and curvature on the haptic identification of surfaces. Paper presented at: First joint eurohaptics conference and symposium on haptic interfaces for virtual environment and teleoperator systems, IEEE-WHC 2005. Pisa; 18–20 Mar 2005.Google Scholar
  40. 40.
    Heuer H, Rapp K. Active error corrections enhance adaptation to a visuo-motor rotation. Exp Brain Res. 2011;211:97–108.PubMedCrossRefGoogle Scholar
  41. 41.
    van Asseldonk EH, Wessels M, Stienen AH, van der Helm FC, van der Kooij H. Influence of haptic guidance in learning a novel visuomotor task. J Physiol Paris. 2009;103(3–5):276–85.PubMedCrossRefGoogle Scholar
  42. 42.
    Liu J, Cramer SC, Reinkensmeyer DJ. Learning to perform a new movement with robotic assistance: comparison of haptic guidance and visual demonstration. J Neuroeng Rehabil. 2006;3:20.PubMedCrossRefGoogle Scholar
  43. 43.
    Nudo RJ, Friel KM. Cortical plasticity after stroke: implications for rehabilitation. Rev Neurol. 1999;155(9):713–7.PubMedGoogle Scholar
  44. 44.
    Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986;323:533–6.CrossRefGoogle Scholar
  45. 45.
    Thoroughman KA, Shadmehr R. Learning of action through adaptive combination of motor primitives [see comments]. Nature. 2000;407(6805):742–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Wolpert DM, Kawato M. Multiple paired forward and inverse models for motor control. Neural Netw. 1998;11(7–8):1317–29.PubMedCrossRefGoogle Scholar
  47. 47.
    Brewer B, Klatky R, Matsuoka Y. Perceptual limits for a robotic rehabilitation environment using visual feedback distortion. IEEE Trans Neural Syst Rehabil Eng. 2005;13(1):1–11.PubMedCrossRefGoogle Scholar
  48. 48.
    Srinivasan MA, LaMotte RH. Tactual discrimination of softness. J Neurophysiol. 1995;73:88–101.PubMedGoogle Scholar
  49. 49.
    Ernst M, Banks M. Humans integrate visual and haptic information in a statistically optimal fashion. Nature. 2002;415:429–33.PubMedCrossRefGoogle Scholar
  50. 50.
    Robles-De-La-Torre G, Hayward V. Force can overcome object geometry in the perception of shape through active touch. Nature. 2001;412:445–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Brewer BR, Klatzky R, Matsuoka Y. Effects of visual feedback distortion for the elderly and the motor-impaired in a robotic rehabilitation environment. Paper presented at: IEEE international conference on robotics and automation (ICRA). New Orleans; 2004.Google Scholar
  52. 52.
    Sainburg RL, Lateiner JE, Latash ML, Bagesteiro LB. Effects of altering initial position on movement direction and extent. J Neurophysiol. 2003;89(1):401–15.PubMedCrossRefGoogle Scholar
  53. 53.
    Kording KP, Wolpert DM. Bayesian integration in sensorimotor learning. Nature. 2004;427(6971):244–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Winstein CJ, Merians AS, Sullivan KJ. Motor learning after unilateral brain damage. Neuropsychologia. 1999;37(8):975–87.PubMedCrossRefGoogle Scholar
  55. 55.
    Wei Y, Bajaj P, Scheidt RA, Patton JL. A real-time haptic/graphic demonstration of how error augmentation can enhance learning. Paper presented at: IEEE international conference on robotics and automation (ICRA). Barcelona; 2005.Google Scholar
  56. 56.
    Kording KP, Wolpert DM. The loss function of sensorimotor learning. Proc Natl Acad Sci USA. 2004;101(26):9839–42.PubMedCrossRefGoogle Scholar
  57. 57.
    Wei Y, Bajaj P, Scheidt RA, Patton JL. Visual error augmentation for enhancing motor learning and rehabilitative relearning. Paper presented at: IEEE-international conference on rehabilitation robotics (ICORR). Chicago; 2005.Google Scholar
  58. 58.
    Wei K, Kording K. Relevance of error: what drives motor adaptation? J Neurophysiol. 2009;101(2):655–64.PubMedCrossRefGoogle Scholar
  59. 59.
    Todorov E, Jordan MI. Optimal feedback control as a theory of motor coordination [see comment]. Nat Neurosci. 2002;5(11):1226–35.PubMedCrossRefGoogle Scholar
  60. 60.
    Kazerooni H. The human power amplifier technology at the University of California, Berkeley. Robot Autonomous Syst. 1996;19(2):179–87.CrossRefGoogle Scholar
  61. 61.
    Aguirre-Ollinger G, Colgate JE, Peshkin MA, Goswami A. Active-impedance control of a lower-limb assistive exoskeleton. Paper presented at: IEEE 10th international conference on rehabilitation robotics, 2007. ICORR 2007. Noordwijk; 13–15 June 2007.Google Scholar
  62. 62.
    Hanlon RE. Motor learning following unilateral stroke. Arch Phys Med Rehabil. 1996;77(8):811–5.PubMedCrossRefGoogle Scholar
  63. 63.
    Jarus T, Gutman T. Effects of cognitive processes and task complexity on acquisition, retention, and transfer of motor skills. Can J Occup Ther. 2001;68(5):280–9.PubMedGoogle Scholar
  64. 64.
    Huang FC, Patton JL, Mussa-Ivaldi FA. Manual skill generalization enhanced by negative viscosity. J Neurophysiol. 2010;104(4):2008–19.PubMedCrossRefGoogle Scholar
  65. 65.
    Patton JL, Dawe G, Scharver C, Mussa-Ivaldi FA, Kenyon R. Robotics and virtual reality: a perfect marriage for motor control research and rehabilitation. Assist Technol. 2006;18(2):181–95.PubMedCrossRefGoogle Scholar
  66. 66.
    Patton JL, Wei Y, Scharver C, Kenyon RV, Scheidt R. Motivating rehabilitation by distorting reality. Paper presented at: BioRob 2006: The first IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics, Pisa; 20–22 Feb 2006.Google Scholar
  67. 67.
    Deutsch JE, Merians AS, Adamovich S, Poizner H, Burdea GC. Development and application of virtual reality technology to improve hand use and gait of individuals post-stroke. Restor Neurol Neurosci. 2004;22(3–5):371–86.PubMedGoogle Scholar
  68. 68.
    Burdea GC. Virtual rehabilitation – benefits and ­challenges. Methods Inf Med. 2003;42(5):519–23.PubMedGoogle Scholar
  69. 69.
    Popescu GV, Burdea G, Boian R. Shared virtual environments for telerehabilitation. Stud Health Technol Inform. 2002;85:362–8.PubMedGoogle Scholar
  70. 70.
    Merians AS, Jack D, Boian R, et al. Virtual reality-augmented rehabilitation for patients following stroke. Phys Ther. 2002;82(9):898–915.PubMedGoogle Scholar
  71. 71.
    Boian R, Sharma A, Han C, et al. Virtual reality-based post-stroke hand rehabilitation. Stud Health Technol Inform. 2002;85:64–70.PubMedGoogle Scholar
  72. 72.
    Jack D, Boian R, Merians AS, et al. Virtual reality-enhanced stroke rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2001;9(3):308–18.PubMedCrossRefGoogle Scholar
  73. 73.
    Burdea G, Popescu V, Hentz V, Colbert K. Virtual reality-based orthopedic telerehabilitation. IEEE Trans Rehabil Eng. 2000;8(3):430–2.PubMedCrossRefGoogle Scholar
  74. 74.
    Schultheis M, Rizzo A. The application of virtual reality technology for rehabilitation. Rehabil Psychol. 2001;46:1–16.CrossRefGoogle Scholar
  75. 75.
    Zhang L, Abreu BC, Seale GS, Masel B, Christiansen CH, Ottenbacher KJ. A virtual reality environment for evaluation of a daily living skill in brain injury rehabilitation: reliability and validity. Arch Phys Med Rehabil. 2003;84(8):1118–24.PubMedCrossRefGoogle Scholar
  76. 76.
    Abdollahi F, Rozario S, Case E, et al. Arm control recovery enhanced by error augmentation. In: IEEE international conference on rehabilitation robotics. Zurich: IEEE; 2011.Google Scholar
  77. 77.
    Dancausea N, Ptitob A, Levin MF. Error correction strategies for motor behavior after unilateral brain damage: short-term motor learning processes. Neuropsychologia. 2002;40(8):1313–23.CrossRefGoogle Scholar
  78. 78.
    Lisberger S. The neural basis for the learning of simple motor skills. Science. 1988;242(4879):728–35.PubMedCrossRefGoogle Scholar
  79. 79.
    Alleva E, Santucci D. Psychosocial vs. “physical” stress situations in rodents and humans: role of neurotrophins. Physiol Behav. 2001;73(3):313–20.PubMedCrossRefGoogle Scholar
  80. 80.
    Scheidt RA, Conditt MA, Secco EL, Mussa-Ivaldi FA. Interaction of visual and proprioceptive feedback during adaptation of human reaching movements. J Neurophysiol. 2005;93(6):3200–13.PubMedCrossRefGoogle Scholar
  81. 81.
    Ravaioli E, Oie KS, Kiemel T, Chiari L, Jeka JJ. Nonlinear postural control in response to visual translation. Exp Brain Res. 2005;160(4):450–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Department of BioengineeringUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Sensory Motor Performance Program (SMPP)Rehabilitation Institute of ChicagoChicagoUSA
  3. 3.Department of Biomedical EngineeringNorthwestern UniversityChicagoUSA

Personalised recommendations