Skip to main content

Beyond Human or Robot Administered Treadmill Training

  • Chapter
  • First Online:
Neurorehabilitation Technology

Abstract

The demand for rehabilitation services is growing apace with the graying of the population. This situation creates both a need and an opportunity to deploy technologies such as rehabilitation robotics, and in the last decade and half, several research groups have deployed variations of this technology. Results so far are mixed with the available evidence demonstrating unequivocally that some forms of robotic therapy can be highly effective, even for patients many years post-stroke, while other forms of robotic therapy have been singularly ineffective. The contrast is starkest when we contrast upper-extremity and lower-extremity therapy. In fact, 2010 Stroke Care Guidelines of the American Heart Association and of the Veterans Administration/Department of Defense (VA/DoD) endorsed the use of the rehabilitation robotics for upper-extremity post-stroke care but concluded that lower-extremity robotic therapy is much less effective and declared “still in its infancy.” We submit that the contrasting effectiveness of upper- and lower-extremity therapies arises from neural factors, not technological factors. Though, no doubt, it might be improved, the technology deployed to date for locomotor therapy is elegant and sophisticated. Unfortunately, it may be misguided, providing highly repeatable control of movement but ultimately doing the wrong thing. The technology we have deployed to date for upper-extremity therapy is firmly based on an understanding of how upper-extremity behavior is neurally controlled and derived from decades of neuroscience research. The limitations of lower-extremity robotic therapy lie not in the robotic technology but in its incompatibility with human motor neuroscience. In this chapter, we briefly review the evidence supporting such negative views, and based on our experience with upper-extremity robotic therapy, we describe what we are presently investigating to revert and work toward a future endorsement of the American Heart Association and VA/DoD for rehabilitation robotics for lower-extremity post-stroke care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miller EL, Murray L, Richards L, et al. The comprehensive overview of nursing and interdisciplinary rehabilitation care of the stroke patient: a scientific statement from the American Heart Association. Stroke. 2010;41:2402–48.

    Article  PubMed  Google Scholar 

  2. Hornby TG, Campbell DD, Kahn JH, et al. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke. 2008;39(6):1786–92.

    Article  PubMed  Google Scholar 

  3. Hidler J, Nichols D, Pelliccio M, et al. Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair. 2009;23(1):5–13.

    PubMed  Google Scholar 

  4. Dietz V. Spinal cord pattern generators for locomotion. Clin Neurophysiol. 2003;114:1379–89.

    Article  PubMed  CAS  Google Scholar 

  5. Duncan PW, Sullivan KJ, Behrman AL, et al. Body-weight-supported treadmill rehabilitation after stroke. N Engl J Med. 2011;364:2026–36.

    Article  PubMed  CAS  Google Scholar 

  6. Forster A, Young J. Incidence and consequences of falls due to stroke: a systematic inquiry. BMJ. 1995;311:83–6.

    Article  PubMed  CAS  Google Scholar 

  7. Ramnemark A, Nyberg L, Borseen B, Olsson T, Gustafson Y. Fractures after stroke. Osteoporos Int. 1998;8:92–5.

    Article  PubMed  CAS  Google Scholar 

  8. Dennis MS, Lo KM, McDowall M, West T. Fractures after stroke: frequency, types, and associations. Stroke. 2002;33:728–34.

    Article  PubMed  CAS  Google Scholar 

  9. Kanis J, Oden A, Johnell O. Acute and long-term increase in fracture risk after hospitalization for stroke. Stroke. 2001;32:702–6.

    Article  PubMed  CAS  Google Scholar 

  10. Robertson DG, Winter DA. Mechanical energy generation, absorption, and transfer amongst segments during walking. J Biomech. 1980;13:845–54.

    Article  PubMed  CAS  Google Scholar 

  11. Sawicki GS, Ferris DP. A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition. J Neuroeng Rehabil. 2009;6:23.

    Article  PubMed  Google Scholar 

  12. Eng JJ, Winter DA. Kinetic analysis of the lower limbs during walking: what information can be gained from a three-dimensional model? J Biomech. 1995;28:753–8.

    Article  PubMed  CAS  Google Scholar 

  13. Teixeira-Salmela LF, Nadeau S, Milot MH, Gravel D, Requiao LF. Effects of cadence on energy generation and absorption at lower extremity joints during gait. Clin Biomech. 2008;23:769–78.

    Article  Google Scholar 

  14. Umberger BR, Martin PE. Mechanical power and efficiency of level walking with different stride rates. J Exp Biol. 2007;210:3255–65.

    Article  PubMed  Google Scholar 

  15. Perry J. Gait analysis: normal and pathological function. Thorofare: Slack; 1992.

    Google Scholar 

  16. Neptune RR, Kautz SA, Zajac FE. Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. J Biomech. 2001;34:1387–98.

    Article  PubMed  CAS  Google Scholar 

  17. Meinders M, Gitter A, Czerniecki JM. The role of ankle plantar flexor muscle work during walking. Scand J Rehabil Med. 1998;30:39–46.

    Article  PubMed  CAS  Google Scholar 

  18. Gottschall JS, Kram R. Energy cost and muscular activity required for propulsion during walking. J Appl Physiol. 2003;94:1766–72.

    PubMed  Google Scholar 

  19. Roy A, Krebs HI, Williams DJ, et al. Robot-aided neurorehabilitation: a novel robot for ankle rehabilitation. IEEE Trans Robot. 2009;25:569–82.

    Article  Google Scholar 

  20. Brown SJ. Marketing trends in managed care. Dallas: Baylor Inst Rehab; 1995.

    Google Scholar 

  21. Blaya J, Herr H. Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Trans Neural Syst Rehabil Eng. 2004;12:24–31.

    Article  PubMed  Google Scholar 

  22. Ferris DP, Czerniecki JM, Hannaford B. An ankle-foot orthosis powered by artificial pneumatic muscles. J Appl Biomech. 2005;21:189–97.

    PubMed  Google Scholar 

  23. Girone M, Burdea G, Bouzit M, Popescu V, Deutsch JE. A Stewart platform-based system for ankle telerehabilitation. Auton Robots. 2001;10:203–12.

    Article  Google Scholar 

  24. Andersen JB, Sinkjaer TS. An actuator system for investigating electrophysiological and biomechanical features around the human ankle joint during gait. IEEE Trans Rehabil Eng. 1995;3:299–306.

    Article  Google Scholar 

  25. Zhang L, Chung SG, Zhiqiang B, et al. Intelligent stretching of ankle joints with contracture/spasticity. IEEE Trans Rehabil Eng. 2002;10:149–57.

    Article  Google Scholar 

  26. Bharadwaj K, Sugar TG. Design of a robotic gait trainer using spring over muscle actuators for ankle stroke rehabilitation. ASME Trans Biomech Eng. 2005;127:1009–13.

    Article  Google Scholar 

  27. Antonsson EK, Mann RW. The frequency content of gait. J Biomech. 1985;18(1):39–47.

    Article  PubMed  CAS  Google Scholar 

  28. Khanna I, Roy A, Rodgers MM, Krebs HI, Macko RM, Forrester LW. Effects of unilateral robotic limb loading on gait characteristics in subjects with chronic stroke. J Neuro Engineer Rehabil. 2010; 7:23.

    Article  Google Scholar 

  29. Forrester LW, Roy A, Krebs HI, Macko RF. Ankle training with a robotic device improves hemiparetic gait after a stroke. Neurorehabil Neural Repair. 2010;25(4):369–77. Epub 2010 Nov 29.

    PubMed  Google Scholar 

  30. Mayr A, Kofler M, Quirbach E, Matzak H, Frohlich K, Saltuari L. Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the lokomat gait orthosis. J Neurorehabil Neural Repair. 2007;21:307–14.

    Article  Google Scholar 

  31. Saltuary L. In: 5th world congress of neuro rehabilitation (WCNR). Brasilia; 2008.

    Google Scholar 

  32. Macko RF, Smith GV, Dobrovolny CL, Sorkin JD, Goldberg AP, Silver KH. Treadmill training improves fitness and ambulatory function in chronic stroke patients. Stroke. 2005;36:2206–11.

    Article  PubMed  Google Scholar 

  33. Ahn J, Hogan N. Feasibility of dynamic entrainment with ankle mechanical perturbation to treat locomotor deficit. In: 32nd annual international conference of the IEEE engineering in medicine and biology society. Buenos Aires; 2010. p. 3422–5.

    Google Scholar 

  34. Ahn J, Patterson T, Lee H, et al. Feasibility of entrainment with ankle mechanical perturbation to treat locomotor deficit of neurologically impaired patients. In: 33rd Annual International Conference of the IEEE EMBS. Boston; 2011;7474–7.

    Google Scholar 

  35. Buerger SP, Palazzolo JJ, Krebs HI, Hogan N. Rehabilitation robotics: adapting robot behavior to suit patient needs and abilities. In: ACC-American control conference. Boston; 2004;4:3239–44.

    Google Scholar 

  36. Cai LL, Fong AJ, Otoshi CK, et al. Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning. J Neurosci. 2006;26(41):10564–8.

    Article  PubMed  CAS  Google Scholar 

  37. Mehrholz J, Werner C, Kugler J, Pohl M. Electromechanical-assisted training for walking after stroke (review). The Cochrane Collaboration. 2007; Issue 4. Art No: CD006185.

    Google Scholar 

  38. Behrman AL, Harkema SJ. Locomotor training after human spinal cord injury: a series of case studies. Phys Ther. 2000;80(7):688–700.

    PubMed  CAS  Google Scholar 

  39. Hesse S, Bertelt C, Jahnke MT, et al. Treadmill training with partial body weight support compared with physiotherapy in nonambulatory hemiparetic patients. Stroke. 1995;26(6):976–81.

    Article  PubMed  CAS  Google Scholar 

  40. Collins S, Wisse M, Ruina A. A three-dimensional passive-dynamic walking robot with two legs and knees. Int J Robot Res. 2001;20:607–15.

    Article  Google Scholar 

  41. Bosecker CJ, Krebs HI. MIT-Skywalker. In: Proceed­ings of IEEE international conference on rehabilitation robotics, Kyoto; 2009. p. 542–9.

    Google Scholar 

  42. Artemiadis P, Krebs HI. On the control of the MIT-Skywalker.In: 32nd annual international conference of the IEEE-EMBS society. Buenos Aires; 2010.

    Google Scholar 

  43. Kim SJ, Krebs HI. Implicit visual distortion modulates human gait. In: 33rd IEEE engineering in medicine and biology society. Boston; 2011.

    Google Scholar 

  44. Nakazawa K, Kawashima N, Akai M, Yano H. On the reflex coactivation of ankle flexor and extensor muscles induced by a sudden drop of support surface during walking in humans. J Appl Physiol. 2004;96:604–11.

    Article  PubMed  Google Scholar 

  45. van deer Linden MH, Marigold DS, Gabreels FJM, Duysens J. Muscle reflexes and synergies triggered by an unexpected support surface height during walking. J Neurophysiol. 2007;97:3639–50.

    Article  PubMed  Google Scholar 

  46. Marigold DS, Patla AE. Adapting locomotion to different surface compliances: neuromuscular responses and changes in movement dynamics. J Neurophysiol. 2005;94:1733–50.

    Article  PubMed  Google Scholar 

  47. af Klint R, Nielsen JB, Sinkjaer T, Grey MJ. Sudden drop in ground support produces force-related unload response in human overground walking. J Neurophysiol. 2009;101:1705–12.

    Article  PubMed  Google Scholar 

  48. Sinkjaer T, Andersen JB, Ladouceur M, Christensen LOD, Nielsen JB. Major role for sensory feedback in soleus EMG activity in the stance phase of walking in man. J Physiol. 2000;523:817–27.

    Article  PubMed  CAS  Google Scholar 

  49. Ferris DP, Farley CT. Interaction of leg stiffness and surface stiffness during human hopping. J Appl Physiol. 1997;82:15–22.

    PubMed  CAS  Google Scholar 

  50. Ferris DP, Louie M, Farley CT. Running in the real world: adjusting leg stiffness for different surfaces. Proc R Soc B. 1998;265:989–94.

    Article  PubMed  CAS  Google Scholar 

  51. Hansen AH, Childress DS, Miff SC, Gard SA, Mesplay KP. The human ankle during walking: implications for design of biomimetic ankle prostheses. J Biomech. 2004;37:1467–74.

    Article  PubMed  Google Scholar 

  52. Lark SD et al. Adequate joint stiffness is critical during the single support phase to control forward and downward body momentum. Clin Biomech. 2003;18:848–55.

    Article  Google Scholar 

  53. Bahlsen HA, Nigg BM. Influence of attached masses on impact forces and running style in heel-toe running. Int J Biomech. 1987;3:264–75.

    Google Scholar 

  54. Chung SG, Van Rey E, Bai Z, Roth EJ, Zhang LQ. Biomechanic changes in passive properties of hemiplegic ankles with spastic hypertonia. Arch Phys Med Rehab. 2004;85:1638–46.

    Article  Google Scholar 

  55. Mirbagheri MM, Barbeau H, Ladouceur M, Kearney RE. Intrinsic and reflex stiffness in normal and spastic, spinal cord injured subjects. Exp Brain Res. 2001;141:446–59.

    Article  PubMed  CAS  Google Scholar 

  56. Lieber RL, Friden J. Spasticity causes a fundamental rearrangement of muscle-joint interaction. Muscle Nerve. 2002;25:265–70.

    Article  PubMed  Google Scholar 

  57. Zhang LQ et al. Measures and mechanisms of hyperactive tendon reflexes in spastic multiple sclerosis patients. Arch Phys Med Rehabil. 2000;81:901–9.

    Article  PubMed  CAS  Google Scholar 

  58. Selles RW, Li X, Lin F, Chung SG, Roth EJ, Zhang LQ. Feedback-controlled and programmed stretching of the ankle plantarflexors and dorsiflexors in stroke: effects of a 4-week intervention program. Arch Phys Med Rehabil. 2005;83:2330–6.

    Article  Google Scholar 

  59. Bohannon RW, Smith MB. Inter-rater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67:206–7.

    PubMed  CAS  Google Scholar 

  60. Agarwal GC et al. Compliance of the human ankle joint. ASME J Biomech Eng. 1977;99:166–70.

    Article  Google Scholar 

  61. Hunter IW, Kearney RE. Dynamics of human ankle stiffness: variation with mean ankle torque. J Biomech. 1982;15:747–52.

    Article  PubMed  CAS  Google Scholar 

  62. Kearney RE, Hunter IW. Dynamics of human ankle stiffness: variation with displacement amplitude. J Biomech. 1982;15:753–6.

    Article  PubMed  CAS  Google Scholar 

  63. Weiss PL, Kearney RE, Hunter IW. Position dependence of ankle joint dynamics-I. Passive mechanics. J Biomech. 1986;19:727–35.

    Article  PubMed  CAS  Google Scholar 

  64. Weiss PL, Kearney RE, Hunter IW. Position dependence of ankle joint dynamics-II. Active mechanics. J Biomech. 1986;19:737–51.

    Article  PubMed  CAS  Google Scholar 

  65. Rydahl SJ, Brouwer BJ. Ankle stiffness and tissue compliance in stroke survivors: a validation of myotonometer measurements. Arch Phys Med Rehabil. 2004;85:1631–7.

    Article  PubMed  Google Scholar 

  66. Lamontagne A, Malouin F, Richards CL. Viscoelastic behavior of plantar flexor muscle-tendon unit at rest. J Orthop Sports Phys Ther. 1997;26:244–52.

    PubMed  CAS  Google Scholar 

  67. Sinkjaer T, Toft E, Andreassen S, Hornemann BC. Muscle stiffness in human ankle dorsiflexors: intrinsic and reflex components. J Neurophysiol. 1988;60:1110–21.

    PubMed  CAS  Google Scholar 

  68. Harlaar J, Becher JG, Snijders CJ, Lankhorst GJ. Passive stiffness characteristics of ankle plantar flexors in hemiplegia. Clin Biomech. 2000;15:261–70.

    Article  CAS  Google Scholar 

  69. Singer B, Dunner J, Singer KP, Allison G. Evaluation of triceps surae muscle length and resistance to passive lengthening in patients with acquired brain injury. Clin Biomech. 2002;17:151–61.

    Article  Google Scholar 

  70. Zinder SM, Granata KP, Padua DA, Gansneder BM. Validity and reliability of a new in vivo ankle stiffness measurement device. J Biomech. 2007;40:463–7.

    Article  PubMed  Google Scholar 

  71. Baumhauer JF, Alosa DM, Renstrom PAFH, Trevino S, Beynnon B. A prospective study of ankle injury risk factors. Am J Sports Med. 1995;23:564–70.

    Article  PubMed  CAS  Google Scholar 

  72. Krebs HI, Rossi S, Kim S-J, et al. Pediatric Anklebot. In: Proceedings IEEE international conference on rehabilitation robotics. Zurich; 2011. p. 544–8.

    Google Scholar 

Download references

Acknowledgment

Portions of this chapter were exc­erpted from previously publications. This work was supported in part by NIH grant #1 R01-HD045343, the Veterans Administration Baltimore Medical Center “Center of Excellence on Task-Oriented Exercise and Robotics in Neurological Diseases” B3688R, the Cerebral Palsy International Research Foundation (CPIRF) and the Niarchos Foundation, and Toyota Motor Corporation’s Partner Robot Division. H. I. Krebs and N. Hogan are co-inventors in several MIT-held patents for the robotic technology. They hold equity positions in Interactive Motion Technologies, Watertown, MA, USA, the company that manufactures this type of technology under license to MIT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermano Igo Krebs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Krebs, H.I., Roy, A., Artemiadis, P.K., Ahn, J., Hogan, N. (2012). Beyond Human or Robot Administered Treadmill Training. In: Dietz, V., Nef, T., Rymer, W. (eds) Neurorehabilitation Technology. Springer, London. https://doi.org/10.1007/978-1-4471-2277-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2277-7_14

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2276-0

  • Online ISBN: 978-1-4471-2277-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics