Automated Storage and Retrieval Systems: A Review on Travel Time Models and Control Policies

  • M. R. Vasili
  • Sai Hong Tang
  • Mehdi Vasili


Automated storage and retrieval system (AS/RS) is one of the major material handling systems, which is widely used in distribution centers and automated production environments. AS/RSs have been utilized not only as alternatives to traditional warehouses but also as a part of advanced manufacturing systems. AS/RSs can play an essential role in modern factories for work-in-process storage and offer the advantages of improved inventory control and cost-effective utilization of time, space and equipment. Many issues and approaches related to the efficiency improvement of AS/RSs have been addressed in the literature. This chapter presents an overview of this literature from the past 40 years. It presents a comprehensive description of the current state-of-the-art in AS/RSs and discusses future prospects. The focus is principally on travel time estimates and different control policies such as dwell-point of the stacker crane, storage assignment, request sequencing and so on. In particular, this chapter will provide researchers and decision makers with an understanding of how to apply existing approaches effectively.


Travel Time Material Handling Storage Policy Retrieval Request Travel Time Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ashayeri J, Gelders L, Van Wassenhove L (1985) A microcomputer-based optimization model for the design of automated warehouses. Int J Prod Res 23(4):825–839. doi: 10.1080/00207548508904750 CrossRefGoogle Scholar
  2. Ashayeri J, Heuts RM, Valkenburg MWT, Veraart HC, Wilhelm MR (2001) A geometrical approach to computing expected cycle times for class-based storage layouts in AS/RS. Disscussion paper (CentER), vol 57. Tilburg University, The Netherlands, pp 1–32Google Scholar
  3. Ashayeri J, Heuts RM, Beekhof M, Wilhelm MR (2002) On the determination of class-based storage assignments in an AS/RS having two I/O locations. In: Meller R et al (eds) Progress in material handling research. Material Handling Institute, CharlotteGoogle Scholar
  4. Automated Storage Retrieval Systems Production Section of the Material Handling Industry of America (2009) Automated storage: it’s all about productivity. Accessed 4 March 2009
  5. ASAP Automation (2008) AS/RS Brochure. Accessed 03 July 2009
  6. Bafna KM, Reed R Jr (1972) An analytical approach to design high-rise stacker crane warehouse systems. J Ind Eng 8:8–14Google Scholar
  7. Baker P, Canessa M (2009) Warehouse design: a structured approach. Eur J Oper Res 193(2):425–436. doi: 10.1016/j.ejor.2007.11.045 CrossRefGoogle Scholar
  8. Bassan Y, Roll Y, Rosenblatt MJ (1980) Internal layout design of a warehouse. AIIE Trans 12(4):317–322. doi: 10.1080/05695558008974523 CrossRefGoogle Scholar
  9. Bozer YA, Cho M (2005) Throughput performance of automated storage/retrieval systems under stochastic demand. IIE Trans 37(4):367–378. doi: 10.1080/07408170590917002 CrossRefGoogle Scholar
  10. Bozer YA, White JA (1984) Travel-time models for automated storage/retrieval systems. IIE Trans 16(4):329–338. doi: 10.1080/07408178408975252 CrossRefGoogle Scholar
  11. Bozer YA, White JA (1990) Design and performance models for end-of-aisle order picking systems. Manag Sci 36(7):852–866. doi: 10.1287/mnsc.36.7.852 CrossRefGoogle Scholar
  12. Bozer YA, White JA (1996) A generalized design and performance analysis model for end-of-aisle order-picking systems. IIE Trans 28(4):271–280. doi: 10.1080/07408179608966275 CrossRefGoogle Scholar
  13. Bozer YA, Schorn EC, Sharp GP (1990) Geometric approaches to solve the Chebyshev traveling salesman problem. IIE Trans 22(3):238–254. doi: 10.1080/07408179008964179 CrossRefGoogle Scholar
  14. Chang SH, Egbelu PJ (1997a) Relative pre-positioning of storage/retrieval machines in automated storage/retrieval system to minimize expected system response time. IIE Trans 29(4):313–322. doi: 10.1080/07408179708966337 Google Scholar
  15. Chang SH, Egbelu PJ (1997b) Relative pre-positioning of storage/retrieval machines in automated storage/retrieval systems to minimize maximum system response time. IIE Trans 29(4):303–312. doi: 10.1080/07408179708966336 Google Scholar
  16. Chang DT, Wen UP (1997) The impact on rack configuration on the speed profile of the storage and retrieval machine. IIE Trans 29(7):525–531. doi: 10.1080/07408179708966363 Google Scholar
  17. Chang DT, Wen UP, Lin JT (1995) The impact of acceleration/deceleration on travel-time models for automated storage/retrieval systems. IIE Trans 27(1):108–111. doi: 10.1080/07408179508936723 CrossRefGoogle Scholar
  18. Chen C, Huang SY, Hsu W-J, Toh AC, Loh CK (2003) Platform-based AS/RS for container storage. In: IEEE international conference on robotics and automation, Taipei, pp 181–187. doi: 10.1109/ROBOT.2003.1241593
  19. De Koster MBM, Le-Duc T, Yugang Y (2006) Optimal storage rack design for a 3-dimensional compact AS/RS. Int J Prod Res 46(6):1495–1514. doi: 10.1080/00207540600957795 CrossRefGoogle Scholar
  20. De Koster MBM, Le-Duc T, Roodbergen KJ (2007) Design and control of warehouse order picking: a literature review. Eur J Oper Res 182(2):481–501. doi: 10.1016/j.ejor.2006.07.009 MATHCrossRefGoogle Scholar
  21. Dooly DR, Lee HF (2008) A shift-based sequencing method for twin-shuttle automated storage and retrieval systems. IIE Trans 40(6):586–594. doi: 10.1080/07408170701730776 CrossRefGoogle Scholar
  22. Eben-Chaime M (1992) Operations sequencing in automated warehousing systems. Int J Prod Res 30(10):2401–2409. doi: 10.1080/00207549208948162 CrossRefGoogle Scholar
  23. Egbelu PJ (1991) Framework for dynamic positioning of storage/retrieval machines in an automated storage/retrieval system. Int J Prod Res 29(1):17–37. doi: 10.1080/00207549108930046 CrossRefGoogle Scholar
  24. Egbelu PJ, Wu CT (1993) A comparison of dwell-point rules in an automated storage/retrieval system. Int J Prod Res 31(11):2515–2530. doi: 10.1080/00207549308956880 CrossRefGoogle Scholar
  25. Elsayed EA (1981) Algorithms for optimal material handling in automatic warehousing systems. Int J Prod Res 19(5):525–535. doi: 10.1080/00207548108956683 CrossRefGoogle Scholar
  26. Elsayed EA, Lee M-K (1996) Order processing in automated storage/retrieval systems with due dates. IIE Trans 28(7):567–578Google Scholar
  27. Elsayed EA, Stern RG (1983) Computerized algorithms for order processing in automated warehousing systems. Int J Prod Res 21(4):579–586. doi: 10.1080/00207548308942392 CrossRefGoogle Scholar
  28. Elsayed EA, Lee M-K, Kim S, Scherer E (1993) Sequencing and batching procedures for minimizing earliness and tardiness penalty of order retrievals. Int J Prod Res 31(3):727–738. doi: 10.1080/00207549308956753 CrossRefGoogle Scholar
  29. Foley RD, Frazelle EH (1991) Analytical results for miniload throughput and the distribution of dual command travel time. IIE Trans 23(3):273–281CrossRefGoogle Scholar
  30. Fukunari M, Malmborg CJ (2009) A network queuing approach for evaluation of performance measures in autonomous vehicle storage and retrieval systems. Eur J Oper Res 193(1):152–167. doi: 10.1016/j.ejor.2007.10.049 MATHCrossRefGoogle Scholar
  31. Goetschalckx M, Ratliff HD (1990) Shared storage policies based on the duration stay of unit loads. Manag Sci 36(9):1120–1132. doi: 10.1287/mnsc.36.9.1120 CrossRefGoogle Scholar
  32. Graves SC, Hausman WH, Schwarz LB (1977) Storage-retrieval interleaving in automatic warehousing systems. Manag Sci 23(9):935–945. doi: 10.1287/mnsc.23.9.935 MATHCrossRefGoogle Scholar
  33. Groover MP (2001) Automation, production systems, and computer-integrated manufacturing, 2nd edn. Prentice-Hall, New JerseyGoogle Scholar
  34. Gu J, Goetschalckx M, McGinnis LF (2007) Research on warehouse operation: a comprehensive review. Eur J Oper Res 177(1):1–21. doi: 10.1016/j.ejor.2006.02.025 MATHCrossRefGoogle Scholar
  35. Gudehus T (1973) Principles of order picking: operations in distribution and warehousing systems. Essen, GermanyGoogle Scholar
  36. Guenov M, Raeside R (1989) Real time optimization of man on board order picking. In: Proceedings of the 10th international conference on automation in warehousing, pp 89–93Google Scholar
  37. Han MH, McGinnis LF, Shieh JS, White JA (1987) On sequencing retrievals in an automated storage/retrieval system. IIE Trans 19(1):56–66. doi: 10.1080/07408178708975370 CrossRefGoogle Scholar
  38. Hausman WH, Schwarz LB, Graves SC (1976) Optimal storage assignment in automatic warehousing systems. Manag Sci 22(6):629–638. doi: 10.1287/mnsc.22.6.629 MATHCrossRefGoogle Scholar
  39. Heragu SS (1997) Facilities design, 1st edn. PWS Publishing, BostonGoogle Scholar
  40. Heskett JL (1963) Cube-per-order index—a key to warehouse stock location. Transp Distrib Manag 3(4):27–31Google Scholar
  41. Hodgson TJ, Lowe TJ (1982) Production lot sizing with material-handling cost considerations. AIIE Trans 14(1):44–51. doi: 10.1080/05695558208975037 CrossRefGoogle Scholar
  42. Hsieh S, Tsai KC (2001) A BOM oriented class-based storage assignment in an automated storage/retrieval system. Int J Adv Manuf Tech 17(9):683–691. doi: 10.1007/s001700170134 CrossRefGoogle Scholar
  43. Hu Y-H, Hsu W-J, Xu X (2004) Efficient algorithms for load shuffling in split-platform AS/RS. In: IEEE international conference on robotics and automation, ICRA ‘04, New Orleans, pp 2717–2722. doi: 10.1109/ROBOT.2004.1307471
  44. Hu Y-H, Huang SY, Chen C, Hsu W-J, Toh AC, Loh CK, Song T (2005) Travel time analysis of a new automated storage and retrieval system. Comput Ind Eng 32(6):1515–1544. doi: 10.1016/j.cor.2003.11.020 Google Scholar
  45. Hu YH, Zhu ZD, Hsu W-J (2010) Load shuffling algorithms for split-platform AS/RS. Robot Comput-Integ Manuf 26(6):677–685. doi: 10.1016/j.rcim.2010.03.004 CrossRefGoogle Scholar
  46. Hur S, Nam J (2006) Performance analysis of automatic storage/retrieval systems by stochastic modelling. Int J Prod Res 44(8):1613–1626. doi: 10.1080/00207540500410176 MATHCrossRefGoogle Scholar
  47. Hur S, Lee YH, Lim SY, Lee MH (2004) A performance estimation model for AS/RS by M/G/1 queuing system. Comput Ind Eng 46(2):233–241. doi: 10.1016/j.cie.2003.12.007 CrossRefGoogle Scholar
  48. Hwang H, Lee M-K (1988) Order batching algorithms for a man-on-board automated storage and retrieval system. Eng Cost Prod Econ 13(4):285–294. doi: 10.1016/0167-188X(88)90014-6 CrossRefGoogle Scholar
  49. Hwang H, Lee SB (1990) Travel-time models considering the operating characteristics of the storage and retrieval machine. Int J Prod Res 28(10):1779–1789. doi: 10.1080/00207549008942833 CrossRefGoogle Scholar
  50. Hwang H, Lim JM (1993) Deriving an optimal dwell-point of the storage/retrieval machine in an automated storage/retrieval system. Int J Prod Res 31(11):2591–2602. doi: 10.1080/00207549308956885 CrossRefGoogle Scholar
  51. Hwang H, Song JY (1993) Sequencing picking operations and travel time models for man-on-board storage and retrieval warehousing system. Int J Prod Econ 29(1):75–88. doi: 10.1016/0925-5273(93)90025-G CrossRefGoogle Scholar
  52. Hwang H, Baek WJ, Lee M-K (1988) Clustering algorithms for order picking in an automated storage and retrieval system. Int J Prod Res 26(2):189–201. doi: 10.1080/00207548808947853 CrossRefGoogle Scholar
  53. Hwang H, Moon S, Gen M (2002) An integrated model for the design of end-of-aisle order picking system and the determination of unit load sizes of AGVs. Comput Ind Eng 42(2–4):249–258. doi: 10.1016/S0360-8352(02)00058-X CrossRefGoogle Scholar
  54. Jaikumar R, Solomon MM (1990) Dynamic operational policies in an automated warehouse. IIE Trans 22(4):370–376. doi: 10.1080/07408179008964191 CrossRefGoogle Scholar
  55. Karasawa Y, Nakayama H, Dohi S (1980) Trade-off analysis for optimal design of automated warehouses. Int J Syst Sci 11(5):567–576. doi: 10.1080/00207728008967037 MATHCrossRefGoogle Scholar
  56. Kim J, Seidmann A (1990) A framework for the exact evaluation of expected cycle times in automated storage systems with full-turnover item allocation and random service requests. Comput Ind Eng 18(4):601–612. doi: 10.1016/0360-8352(90)90018-H CrossRefGoogle Scholar
  57. Koenig J (1980) Design and model the total system. Ind Eng 12(10):22–27Google Scholar
  58. Kulturel S, Ozdemirel NE, Sepil C, Bozkurt Z (1999) Experimental investigation of shared storage assignment policies in automated storage/retrieval systems. IIE Trans 31(8):739–749. doi: 10.1080/07408179908969873 Google Scholar
  59. Kulwiec RA (1985) Materials handling handbook, 2nd edn edn. Wiley, New YorkCrossRefGoogle Scholar
  60. Kuo P-H, Krishnamurthy A, Malmborg CJ (2007) Design models for unit load storage and retrieval systems using autonomous vehicle technology and resource conserving storage and dwell-point policies. Appl Math Model 31(10):2332–2346. doi: 10.1016/j.apm.2006.09.011 MATHCrossRefGoogle Scholar
  61. Le-Duc T, De Koster MBM, Yugang Y (2006) Optimal storage rack design for a 3-dimensional compact AS/RS. ERIM report series research in managementGoogle Scholar
  62. Lee HF (1997) Performance analysis for automated storage and retrieval systems. IIE Trans 29(1):15–28. doi: 10.1080/07408179708966308 CrossRefGoogle Scholar
  63. Lee HF, Schaefer SK (1996) Retrieval sequencing for unit-load automated storage and retrieval systems with multiple openings. Int J Prod Res 34(10):2943–2962. doi: 10.1080/00207549608905067 MATHCrossRefGoogle Scholar
  64. Lee HF, Schaefer SK (1997) Sequencing methods for automated storage and retrieval systems with dedicated storage. Comput Ind Eng 32(2):351–362. doi: 10.1016/S0360-8352(96)00298-7 CrossRefGoogle Scholar
  65. Lee SG, de Souza R, Ong EK (1996) Simulation modelling of a narrow aisle automated storage and retrieval system (AS/RS) serviced by rail-guided vehicles. Comput Ind 30(3):241–253. doi: 10.1016/0166-3615(96)00025-5 CrossRefGoogle Scholar
  66. Lee YH, Tanchoco JMA, Jin S (1999) Performance estimation models for AS/RS with unequal sized cells. Int J Prod Res 37(18):4197–4216. doi: 10.1080/002075499189736 MATHCrossRefGoogle Scholar
  67. Lee YH, Hwan Lee M, Hur S (2005) Optimal design of rack structure with modular cell in AS/RS. Int J Prod Econ 98(2):172–178. doi: 10.1016/j.ijpe.2004.05.018 CrossRefGoogle Scholar
  68. Linn RJ, Wysk RA (1987) An analysis of control strategies for an automated storage/retrieval system. INFOR 25(1):66–83Google Scholar
  69. Linn RJ, Wysk RA (1990a) An expert system based controller for an automated storage/retrieval system. Int J Prod Res 28(4):735–756. doi: 10.1080/00207549008942752 CrossRefGoogle Scholar
  70. Linn RJ, Wysk RA (1990b) An expert system framework for automated storage and retrieval system control. Comput Ind Eng 18(1):37–48. doi: 10.1016/0360-8352(90)90040-S CrossRefGoogle Scholar
  71. Linn RJ, Xie X (1993) A simulation analysis of sequencing rules for ASRS in a pull-based assembly facility. Int J Prod Res 31(10):2355–2367. doi: 10.1080/00207549308956862 CrossRefGoogle Scholar
  72. Mahajan S, Rao BV, Peters BA (1998) A retrieval sequencing heuristic for miniload end-of-aisle automated storage/retrieval systems. Int J Prod Res 36(6):1715–1731. doi: 10.1080/002075498193246 MATHCrossRefGoogle Scholar
  73. Malmborg CJ (2001) Rule of thumb heuristics for configuring storage racks in automated storage and retrieval systems design. Int J Prod Res 39(3):511–527. doi: 10.1080/0020754001004368 CrossRefGoogle Scholar
  74. Manzini R, Gamberi M, Regattieri A (2006) Design and control of an AS/RS. Int J Adv Manuf Tech 28(7):766–774. doi: 10.1007/s00170-004-2427-6 CrossRefGoogle Scholar
  75. Meller RD, Mungwattana A (1997) Multi-shuttle automated storage/retrieval systems. IIE Trans 29(10):925–938. doi: 10.1023/a:1018592017528 Google Scholar
  76. Meller RD, Mungwattana A (2005) AS/RS dwell-point strategy selection at high system utilization: a simulation study to investigate the magnitude of the benefit. Int J Prod Res 43(24):5217–5227. doi: 10.1080/00207540500215617 CrossRefGoogle Scholar
  77. Meyers FE, Stephens MP (2005) Manufacturing facilities design and material handling, 3rd edn. Pearson Prentice-Hall, New JerseyGoogle Scholar
  78. Moon G, Kim GP (2001) Effects of relocation to AS/RS storage location policy with production quantity variation. Comput Ind Eng 40(1–2):1–13CrossRefGoogle Scholar
  79. Muralidharan B, Linn RJ, Pandit R (1995) Shuffling heuristics for the storage location assignment in an AS/RS. Int J Prod Res 33(6):1661–1672. doi: 10.1080/00207549508930234 MATHCrossRefGoogle Scholar
  80. Murty KG, Liu J, Wan Y-w, Linn R (2005) A decision support system for operations in a container terminal. Decis Support Syst 39(3):309–332. doi: 10.1016/j.dss.2003.11.002 CrossRefGoogle Scholar
  81. Pan CH, Liu SY (1995) A comparative study of order batching algorithms. Omega 23(6):691–700. doi: 10.1016/0305-0483(95)00038-0 CrossRefGoogle Scholar
  82. Pan C-H, Wang C-H (1996) A framework for the dual command cycle travel time model in automated warehousing systems. Int J Prod Res 34(8):2099–2117. doi: 10.1080/00207549608905016 MATHMathSciNetCrossRefGoogle Scholar
  83. Park BC (1999) Optimal dwell-point policies for automated storage/retrieval systems with dedicated storage. IIE Trans 31(10):1011–1013. doi: 10.1080/07408179908969901 Google Scholar
  84. Park BC (2001) An optimal dwell-point policy for automated storage/retrieval systems with uniformly distributed, rectangular racks. Int J Prod Res 39(7):1469–1480. doi: 10.1080/00207540010023583 MATHCrossRefGoogle Scholar
  85. Park BC (2006) Performance of automated storage/retrieval systems with non-square-in-time racks and two-class storage. Int J Prod Res 44(6):1107–1123. doi: 10.1080/00207540500357070 CrossRefGoogle Scholar
  86. Park YH, Webster DB (1989) Modelling of three-dimensional warehouse systems. Int J Prod Res 27(6):985–1003. doi: 10.1080/00207548908942603 CrossRefGoogle Scholar
  87. Park B, Foley R, White J, Frazelle E (2003) Dual command travel times and miniload system throughput with turnover-based storage. IIE Trans 35(4):343–355. doi: 10.1080/07408170304375 CrossRefGoogle Scholar
  88. Park BC, Foley RD, Frazelle EH (2006) Performance of miniload systems with two-class storage. Eur J Oper Res 170(1):144–155. doi: 10.1016/j.ejor.2004.07.057 MATHCrossRefGoogle Scholar
  89. Perry RF, Hoover SV, Freeman DR (1984) An optimum-seeking approach to the design of automated storage/retrieval systems. IEEE press, Piscataway, pp 348-354Google Scholar
  90. Peters BA, Smith JS, Hale TS (1996) Closed form models for determining the optimal dwell-point location in automated storage and retrieval systems. Int J Prod Res 34(6):1757–1772. doi: 10.1080/00207549608904995 MATHCrossRefGoogle Scholar
  91. Petersen CG, Aase GR, Heiser DR (2004) Improving order-picking performance through the implementation of class-based storage. Int J Phys Distrib Log Manag 34(7):534–544. doi: 10.1108/09600030410552230 CrossRefGoogle Scholar
  92. Potrc I, Lerher T, Kramberger J, Sraml M (2004) Simulation model of multi-shuttle automated storage and retrieval systems. J Mater Process Tech 157–158:236–244. doi: 10.1016/j.jmatprotec.2004.09.036 CrossRefGoogle Scholar
  93. Raghunath S, Perry R, Cullinane T (1986) Interactive simulation modeling of automated storage retrieval systems. In: Wilson J, Henriksen J, Roberts S (eds) Winter simulation conference, Washington DC, ACM, New York, pp 613-620. doi: 10.1145/318242.318499
  94. Randhawa SU, Shroff R (1995) Simulation-based design evaluation of unit load automated storage/retrieval systems. Comput Ind Eng 28(1):71–79. doi: 10.1016/0360-8352(94)00027-K CrossRefGoogle Scholar
  95. Randhawa SU, McDowell ED, Wang W-T (1991) Evaluation of scheduling rules for single- and dual-dock automated storage/retrieval system. Comput Ind Eng 20(4):401–410. doi: 10.1016/0360-8352(91)90012-U CrossRefGoogle Scholar
  96. Rehg JA (2003) Introduction to robotics in CIM systems, 5th edn. Prentice-Hall, New JerseyGoogle Scholar
  97. Roberts SD, Reed R Jr (1972) Optimal warehouse bay configurations. AIIE Trans 4(3):178–185CrossRefGoogle Scholar
  98. Roodbergen KJ, Vis IFA (2009) A survey of literature on automated storage and retrieval systems. Eur J Oper Res 194(2):343–362. doi: 10.1016/j.ejor.2008.01.038 MATHCrossRefGoogle Scholar
  99. Rosenblatt MJ, Eynan A (1989) Deriving the optimal boundaries for class-based automatic storage/retrieval systems. Manag Sci 35(12):1519–1524. doi: 10.1287/mnsc.35.12.1519 CrossRefGoogle Scholar
  100. Rosenblatt MJ, Roll Y (1984) Warehouse design with storage policy considerations. Int J Prod Res 22(5):809–821. doi: 10.1080/00207548408942501 CrossRefGoogle Scholar
  101. Rosenblatt MJ, Roll Y, Zyser DV (1993) A combined optimization and simulation approach for designing automated storage/retrieval systems. IIE Trans 25(1):40–50. doi: 10.1080/07408179308964264 CrossRefGoogle Scholar
  102. Rouwenhorst B, Reuter B, Stockrahm V, van Houtum GJ, Mantel RJ, Zijm WHM (2000) Warehouse design and control: framework and literature review. Eur J Oper Res 122(3):515–533. doi: 10.1016/S0377-2217(99)00020-X MATHCrossRefGoogle Scholar
  103. Sari Z, Saygin C, Ghouali N (2005) Travel-time models for flow-rack automated storage and retrieval systems. Int J Adv Manuf Tech 25(9):979–987. doi: 10.1007/s00170-003-1932-3 CrossRefGoogle Scholar
  104. Sarker BR, Babu PS (1995) Travel time models in automated storage/retrieval systems: a critical review. Int J Prod Econ 40(2–3):173–184. doi: 10.1016/0925-5273(95)00075-2 CrossRefGoogle Scholar
  105. Sarker BR, Sabapathy A, Lal AM, Han M-H (1991) Performance evaluation of a double shuttle automated storage and retrieval system. Prod Plan Control 2(3):207–213. doi: 10.1080/09537289108919348 CrossRefGoogle Scholar
  106. Schwarz LB, Graves SC, Hausman WH (1978) Scheduling policies for automatic warehousing systems: simulation results. AIIE Trans 10(3):260–270. doi: 10.1080/05695557808975213 CrossRefGoogle Scholar
  107. Stevenson WJ (2005) Operations management, 8th edn. McGraw-Hill/Irwin, New YorkGoogle Scholar
  108. Thonemann UW, Brandeau ML (1998) Optimal storage assignment policies for automated storage and retrieval systems with stochastic demands. Manag Sci 44(1):142–148. doi: 10.1287/mnsc.44.1.142 MATHCrossRefGoogle Scholar
  109. Tompkins JA, White JA, Bozer YA, Frazelle EH, Tanchoco JMA, Trevino J (1996) Facilities planning, 2nd edn. Wiley, New YorkGoogle Scholar
  110. Van den Berg JP (1996) Class-based storage allocation in a single-command warehouse with space requirement constraints. Int J Ind Eng 3:21–28Google Scholar
  111. Van den Berg JP (1999) A literature survey on planning and control of warehousing systems. IIE Trans 31(8):751–762. doi: 10.1023/a:1007606228790 Google Scholar
  112. Van den Berg JP (2002) Analytic expressions for the optimal dwell-point in an automated storage/retrieval system. Int J Prod Econ 76(1):13–25. doi: 10.1016/S0925-5273(01)00149-9 CrossRefGoogle Scholar
  113. Van den Berg JP, Gademann AJRM (1999) Optimal routing in an automated storage/retrieval system with dedicated storage. IIE Trans 31(5):407–415. doi: 10.1023/a:1007545122755 CrossRefGoogle Scholar
  114. Van den Berg JP, Gademann AJRM (2000) Simulation study of an automated storage/retrieval system. Int J Prod Res 38(6):1339–1356. doi: 10.1080/002075400188889 MATHCrossRefGoogle Scholar
  115. Van Oudheusden DL, Zhu W (1992) Storage layout of AS/RS racks based on recurrent orders. Eur J Oper Res 58(1):48–56. doi: 10.1016/0377-2217(92)90234-Z CrossRefGoogle Scholar
  116. Vasili MR, Tang SH, Homayouni SM, Ismail N (2006) Comparison of different dwell-point policies for split-platform automated storage and retrieval system. Int J Adv Manuf Tech 3(1):91–106Google Scholar
  117. Vasili MR, Tang SH, Homayouni SM, Ismail N (2008) A statistical model for expected cycle time of SP-AS/RS: an application of Monte Carlo simulation. Appl Artif Intell 7(8):824–840. doi: 10.1080/08839510802374841 CrossRefGoogle Scholar
  118. Wen UP, Chang DT, Chen SP (2001) The impact of acceleration/deceleration on travel-time models in class-based automated S/R systems. IIE Trans 33(7):599–608. doi: 10.1023/a:1010848601660 Google Scholar
  119. White JA, Kinney HD (1982) Storage and warehousing. In: Salvendy G (ed) Handbook of industrial engineering. Wiley, New YorkGoogle Scholar
  120. Yin YL, Rau H (2006) Dynamic selection of sequencing rules for a class-based unit-load automated storage and retrieval system. Int J Adv Manuf Tech 29(11):1259–1266. doi: 10.1007/s00170-005-0005-1 CrossRefGoogle Scholar
  121. Yu Y, De Koster MBM (2009a) Designing an optimal turnover-based storage rack for a 3D compact automated storage and retrieval system. Int J Prod Res 47(6):1551–1571. doi: 10.1080/00207540701576346 MATHCrossRefGoogle Scholar
  122. Yu Y, De Koster MBM (2009b) Optimal zone boundaries for two-class-based compact three-dimensional automated storage and retrieval systems. IIE Trans 41(3):194–208. doi: 10.1080/07408170802375778 CrossRefGoogle Scholar
  123. Zollinger HA (1975) Planning, evaluating and estimating storage systems. In: Advanced material handling seminar, Purdue University, INGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Department of Industrial Engineering, Lenjan BranchIslamic Azad UniversityEsfahanIran

Personalised recommendations