Skip to main content

Watchman Routes

  • Chapter
Euclidean Shortest Paths
  • 1043 Accesses

Abstract

So far, the best result in running time for solving the floating watchman route problem (i.e., shortest path for viewing any point in a simple polygon with given start point) is \({\mathcal{O}}(n^{4}\log n)\), published in 2003 by M. Dror, A. Efrat, A. Lubiw, and J. Mitchell. This chapter provides an algorithm with \(\kappa(\varepsilon) \cdot{\mathcal{O}}(kn) + {\mathcal{O}}(k^{2}n)\) runtime, where n is the number of vertices of the given simple polygon P, and k the number of essential cuts; κ(ε) defines the numerical accuracy depending on a selected constant ε>0. Moreover, the presented RBA appears to be significantly simpler, easier to understand and to be implemented than previous ones for solving the fixed watchman route problem.

Sometimes the path you are on is not as important as the direction you are heading. For, no matter if you take the Holland Tunnel or the George Washington Bridge you get to New Jersey, so long as you are heading west. The procedure involved in your path to Nirvana may meander, but a road worth travelling will have its twists and turns.

Kevin Patrick Smith (born 1970)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We do not have to consider any non-essential cuts when defining active cuts. Otherwise the route would be longer.

  2. 2.

    See [29].

  3. 3.

    See [30].

References

  1. Alsuwaiyel, M.H., Lee, D.T.: Minimal link visibility paths inside a simple polygon. Comput. Geom. 3(1), 1–25 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alsuwaiyel, M.H., Lee, D.T.: Finding an approximate minimum-link visibility path inside a simple polygon. Inf. Process. Lett. 55, 75–79 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arkin, E.M., Mitchell, J.S.B., Piatko, C.: Minimum-link watchman tours. Report, University at Stony Brook (1994)

    Google Scholar 

  4. Asano, T., Ghosh, S.K., Shermer, T.C.: Visibility in the plane. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 829–876. Elsevier, Amsterdam (2000)

    Chapter  Google Scholar 

  5. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge, UK (2004)

    Google Scholar 

  6. Carlsson, S., Jonsson, H., Nilsson, B.J.: Optimum guard covers and m-watchmen routes for restricted polygons. In: Proc. Workshop Algorithms Data Struct. LNCS, vol. 519, pp. 367–378. Springer, Berlin (1991)

    Chapter  Google Scholar 

  7. Carlsson, S., Jonsson, H., Nilsson, B.J.: Optimum guard covers and m-watchmen routes for restricted polygons. Int. J. Comput. Geom. Appl. 3, 85–105 (1993)

    Article  MATH  Google Scholar 

  8. Carlsson, S., Jonsson, H., Nilsson, B.J.: Approximating the shortest watchman route in a simple polygon. Technical report, Lund University, Sweden (1997)

    Google Scholar 

  9. Carlsson, S., Jonsson, H., Nilsson, B.J.: Finding the shortest watchman route in a simple polygon. Discrete Comput. Geom. 22, 377–402 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chin, W., Ntafos, S.: Optimum watchman routes. Inf. Process. Lett. 28, 39–44 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chin, W.-P., Ntafos, S.: Shortest watchman routes in simple polygons. Discrete Comput. Geom. 6, 9–31 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Czyzowicz, J., Egyed, P., Everett, H., Lenhart, W., Lyons, K., Rappaport, D., Shermer, T., Souvaine, D., Toussaint, G., Urrutia, J., Whitesides, S.: The aquarium keeper’s problem. In: Proc. ACM–SIAM Sympos. Data Structures Algorithms, pp. 459–464 (1991)

    Google Scholar 

  13. Dror, M., Efrat, A., Lubiw, A., Mitchell, J.: Touring a sequence of polygons. In: Proc. STOC, pp. 473–482 (2003)

    Google Scholar 

  14. Gewali, L.P., Lombardo, R.: Watchman Routes for a Pair of Convex Polygons. Lecture Notes in Pure Appl. Math., vol. 144 (1993)

    Google Scholar 

  15. Gewali, L.P., Ntafos, S.: Watchman routes in the presence of a pair of convex polygons. In: Proc. Canad. Conf. Comput. Geom., pp. 127–132 (1995)

    Google Scholar 

  16. Gewali, L.P., Meng, A., Mitchell, J.S.B., Ntafos, S.: Path planning in 0/1/infinity weighted regions with applications. ORSA J. Comput. 2, 253–272 (1990)

    Article  MATH  Google Scholar 

  17. Hammar, M., Nilsson, B.J.: Concerning the time bounds of existing shortest watchman routes. In: Proc. FCT’97. LNCS, vol. 1279, pp. 210–221 (1997)

    Google Scholar 

  18. Kumar, P., Veni Madhavan, C.: Shortest watchman tours in weak visibility polygons. In: Proc. Canad. Conf. Comput. Geom., pp. 91–96 (1995)

    Google Scholar 

  19. Mata, C., Mitchell, J.S.B.: Approximation algorithms for geometric tour and network design problems. In: Proc. Ann. ACM Symp. Computational Geometry, pp. 360–369 (1995)

    Google Scholar 

  20. Mitchell, J.S.B.: Geometric shortest paths and network optimization. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 633–701. Elsevier, Amsterdam (2000)

    Chapter  Google Scholar 

  21. Mitchell, J.S.B., Wynters, E.L.: Watchman routes for multiple guards. In: Proc. Canad. Conf. Comput. Geom., pp. 126–129 (1991)

    Google Scholar 

  22. Nilsson, B.J.: Guarding art galleries: methods for mobile guards. Ph.D. thesis, Lund University, Sweden (1995)

    Google Scholar 

  23. Nilsson, B.J., Wood, D.: Optimum watchmen routes in spiral polygons. In: Proc. Canad. Conf. Comput. Geom., pp. 269–272 (1990)

    Google Scholar 

  24. Ntafos, S.: The robber route problem. Inf. Process. Lett. 34, 59–63 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ntafos, S.: Watchman routes under limited visibility. Comput. Geom. 1, 149–170 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ntafos, S., Gewali, L.: External watchman routes. Vis. Comput. 10, 474–483 (1994)

    Article  Google Scholar 

  27. Roberts, A.W., Varberg, V.D.: Convex Functions. Academic Press, New York (1973)

    Google Scholar 

  28. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  29. Sunday, D.: Algorithm 14: tangents to and between polygons. http://softsurfer.com/Archive/algorithm_0201/ (2011). Accessed July 2011

  30. Sunday, D.: Algorithm 3: fast winding number inclusion of a point in a polygon. http://softsurfer.com/Archive/algorithm_0103/ (2011). Accessed July 2011

  31. Tan, X.: Fast computation of shortest watchman routes in simple polygons. Inf. Process. Lett. 77, 27–33 (2001)

    Article  MATH  Google Scholar 

  32. Tan, X.: Approximation algorithms for the watchman route and zookeeper’s problems. In: Proc. Computing and Combinatorics. LNCS, vol. 2108, pp. 201–206. Springer, Berlin (2005)

    Chapter  Google Scholar 

  33. Tan, X.: Approximation algorithms for the watchman route and zookeeper’s problems. Discrete Appl. Math. 136, 363–376 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tan, X.: A linear-time 2-approximation algorithm for the watchman route problem for simple polygons. Theor. Comput. Sci. 384, 92–103 (2007)

    Article  MATH  Google Scholar 

  35. Tan, X., Hirata, T.: Constructing shortest watchman routes by divide-and-conquer. In: Proc. ISAAC. LNCS, vol. 762, pp. 68–77 (1993)

    Google Scholar 

  36. Tan, X., Hirata, T., Inagaki, Y.: An incremental algorithm for constructing shortest watchman route algorithms. Int. J. Comput. Geom. Appl. 3, 351–365 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tan, X., Hirata, T., Inagaki, Y.: Corrigendum to ‘An incremental algorithm for constructing shortest watchman routes’. Int. J. Comput. Geom. Appl. 9, 319–323 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fajie Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Li, F., Klette, R. (2011). Watchman Routes. In: Euclidean Shortest Paths. Springer, London. https://doi.org/10.1007/978-1-4471-2256-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2256-2_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2255-5

  • Online ISBN: 978-1-4471-2256-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics