Stability of Time-Delay Reset Control Systems

  • Alfonso BañosEmail author
  • Antonio Barreiro
Part of the Advances in Industrial Control book series (AIC)


This chapter presents results on the stability of time-delay systems under reset control. Since reset control is able to overcome fundamental limitations, and time-delay is one source of such limitations, it is of great interest to study the problem of delayed reset systems. The stability is addressed by choosing an appropriate Lyapunov–Krasovskii functional and by imposing that the functional should decrease in the continuous and reset modes. The resulting conditions take the form of linear matrix inequalities, and, depending on the chosen functional, these LMIs can be delay-dependent or delay-independent. In both cases, those LMIs, derived from time-domain stability conditions, are translated into equivalent frequency-domain conditions by means of appropriate tools, like the Kalman–Yakubovich–Popov lemma, or passivity techniques. From the latter frequency-domain conditions, useful interpretations are exhibited regarding the achieved robustness, in terms of scaled small-gain or positive realness of certain subsystems. Finally, several examples illustrate the application of the stability conditions, showing the potential of reset controls when applied to time-delay systems. This chapter is based on the publications (Baños and Barreiro in 32nd IECON Conference, Paris, France, 2006; Baños and Barreiro in Proceedings of the American Control Conference, ACC, New York, 2007; Baños and Barreiro in IEEE Trans. Autom. Control 54(2):341–346, 2009; Barreiro and Baños in Automatica 46:216–221, 2010).


  1. 1.
    Åström, K.J.: Limitations on control system performance. Eur. J. Control 6, 2–20 (2000) MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bainov, D.D., Simeonov, P.S.: Systems with Impulse Effect: Stability, Theory and Applications. Ellis Horwood, Chichester (1989) zbMATHGoogle Scholar
  3. 3.
    Baños, A., Barreiro, A.: Delay-independent stability of reset systems. In: 32nd IECON Conference, Paris, France (2006) Google Scholar
  4. 4.
    Baños, A., Barreiro, A.: Delay-dependent stability of reset control systems. In: Proceedings of the American Control Conference. ACC, New York (2007) Google Scholar
  5. 5.
    Baños, A., Barreiro, A.: Delay-independent stability of reset systems. IEEE Trans. Autom. Control 54(2), 341–346 (2009) CrossRefGoogle Scholar
  6. 6.
    Baños, A., Carrasco, J., Barreiro, A.: Reset-times dependent stability of reset control with unstable base systems. In: Proceedings of the IEEE Int. Symp. on Industrial Electronics (ISIE), Vigo, Spain (2007) Google Scholar
  7. 7.
    Barreiro, A., Baños, A.: Delay-dependent stability of reset systems. Automatica 46, 216–221 (2010) zbMATHCrossRefGoogle Scholar
  8. 8.
    Beker, O.: Analysis of reset control systems. Ph.D. Thesis, University of Massachusetts, Amherst (2001) Google Scholar
  9. 9.
    Beker, O., Hollot, C.V., Chait, Y., Han, H.: Fundamental properties of reset control systems. Automatica 40, 905–915 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Carrasco, J., Baños, A., van der Schaft, A.: A passivity based approach to reset control systems stability. Syst. Control Lett. 59, 18–24 (2010) zbMATHCrossRefGoogle Scholar
  11. 11.
    Chen, T., Francis, B.A.: Input-output stability of sampled data systems. IEEE Trans. Autom. Control 36, 1 (1991) Google Scholar
  12. 12.
    Chen, J., Latchman, H.A.: Frequency sweeping tests for stability independent of the delay. IEEE Trans. Autom. Control 40, 1640–1645 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Clegg, J.C.: A nonlinear integrator for servomechanism. Trans. AIEE, Part II 77, 41–42 (1958) Google Scholar
  14. 14.
    De la Sen, M., Luo, N.: A note on the stability of linear time-delay systems with impulsive inputs. IEEE Trans. Circuits Syst. 50(1), 149–152 (2003) CrossRefGoogle Scholar
  15. 15.
    Horowitz, I.M., Rosenbaum, P.: Nonlinear design for cost of feedback reduction in systems with large parameter uncertainty. Int. J. Control 24(6), 977–1001 (1975) CrossRefGoogle Scholar
  16. 16.
    Gu, K., Kharitonov, V.L., Chen, J.: Stability of Time-Delay Systems. Birkhäuser, Boston (2003) zbMATHCrossRefGoogle Scholar
  17. 17.
    Guo, Y., Wang, Y., Zheng, J., Xie, L.: Stability analysis, design and application of reset control systems. In: Proceedings of the IEEE Int. Conf. on Control and Automation, Guangzhou, China (2007) Google Scholar
  18. 18.
    Haddad, W.M., Nersesov, S.G., Chellaboina, V.S.: Energy-based control for hybrid port-controlled Hamiltonian systems. Automatica 39, 1425–1435 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Khalil, H.J.: Nonlinear Systems, 2nd edn. Prentice Hall, Upper Saddle River (1996) Google Scholar
  20. 20.
    Krishman, K.R., Horowitz, I.M.: Synthesis of a nonlinear feedback system with significant plant-ignorance for prescribed system tolerances. Int. J. Control 19(4), 689–706 (1974) CrossRefGoogle Scholar
  21. 21.
    Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989) zbMATHGoogle Scholar
  22. 22.
    Liu, X., Ballinger, G.: Uniform asymptotic stability of impulsive delay differential equations. Comput. Math. Appl. 41, 903–915 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Liu, X., Wang, Q.: Stability of nontrivial solution of delay differential equations with state-dependent impulses. Appl. Math. Comput. 174, 271–288 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Liu, X., Shen, X., Zhang, Y., Wang, Q.: Stability criteria for impulsive systems with time delay and unstable system matrices. IEEE Trans. Circuits Syst. 54, 10 (2007) MathSciNetGoogle Scholar
  25. 25.
    Nešić, D., Zaccarian, L., Teel, A.R.: Stability properties of reset systems. Automatica 44, 8 (2008) Google Scholar
  26. 26.
    Park, P.: A delay-dependent stability criterion for systems with uncertain time-invariant delays. IEEE Trans. Autom. Control 44, 876–877 (1999) zbMATHCrossRefGoogle Scholar
  27. 27.
    Rantzer, A.: On the Kalman–Yakubovich–Popov lemma. Syst. Control Lett. 28, 7–10 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Yang, T.: Impulsive Control Theory. Lecture Notes in Control and Information Sciences, vol. 272. Springer, Berlin (2001) zbMATHGoogle Scholar
  29. 29.
    Zhang, J., Knospe, C.R., Tsiotras, P.: Stability of time-delay systems: equivalence between Lyapunov and scaled small-gain conditions. IEEE Trans. Autom. Control 46, 482–486 (2001) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Fac. Informática, Depto. Informática y Sistemas, Grupo de Informática IndustrialUniversidad de MurciaMurciaSpain
  2. 2.Depto. Ingeniería de Sistemas y Automática, ETSIIUniversidad de VigoVigoSpain

Personalised recommendations