Introduction

Part of the Advances in Industrial Control book series (AIC)

Abstract

This chapter presents an introduction to reset control systems. The chapter pursues two objectives: The first one is to give a quick and simple description of what a reset control is, and provide basic explanations on why and when it is convenient to use this strategy. This objective is covered by the first two sections and is summarized in this key idea: a reset control is a simple nonlinear control technique very effective for linear plants subject to fundamental design limitations. The second objective of the chapter is to give a brief survey on the literature on analysis and design of reset control systems. The historical perspective begins with the early ideas on reset control, including the popular Clegg integrator and the first-order-reset-element (FORE) by Horowitz and coworkers. The following section presents the first series of rigorous results on analysis and design of reset controllers using a state-space description, and including full reset and partial reset compensators. The next section deals with the relations between reset control and the wider field of impulsive control, from different points of view. The next two sections cover new formalizations of reset control within the field of hybrid systems, including several recent approaches to reset control.

Keywords

Attenuation Expense Autocorrelation Sine Settling 

References

  1. 1.
    Aangenent, W.H.T.M., Witvoet, G., Heemels, W.P.M.H., van de Molengraft, M.J.G., Steinbuch, M.: Performance analysis of reset control systems. Int. J. Robust Nonlinear Control 20(11), 1213–1233 (2009) CrossRefGoogle Scholar
  2. 2.
    Åström, K.J.: Limitations on control system performance. Eur. J. Control 6, 2–20 (2000) MathSciNetMATHGoogle Scholar
  3. 3.
    Åström, K.J., Murray, R.M.: Feedback Systems. An Introduction for Scientists and Engineers. Princeton University Press, Princeton (2008) Google Scholar
  4. 4.
    Bainov, D.D., Simeonov, P.S.: Systems with Impulse Effect: Stability, Theory and Applications. Ellis Horwood, Chichester (1989) MATHGoogle Scholar
  5. 5.
    Baños, A., Barreiro, A.: Delay-independent stability of reset control systems. In: 32nd Annual Conference of IEEE Industrial Electronics Society, Paris, France (2006) Google Scholar
  6. 6.
    Baños, A., Vidal, A.: Definition and tuning of PI + CI reset controller. In: European Control Conference, Kos, Grecia (2007) Google Scholar
  7. 7.
    Baños, A., Carrasco, J., Barreiro, A.: Reset times-dependent stability of reset control system. In: European Control Conference, Kos, Grecia (2007) Google Scholar
  8. 8.
    Baños, A., Vidal, A.: Design of PC + CI reset compensators for second order plants. In: IEEE International Symposium on Industrial Electronics, Vigo, España (2007) Google Scholar
  9. 9.
    Baños, A., Carrasco, J., Barreiro, A.: Reset times-dependent stability of reset control with unstable base systems. In: IEEE International Symposium on Industrial Electronics, Vigo, España (2007) Google Scholar
  10. 10.
    Baños, A., Barreiro, A.: Delay dependent stability of reset control systems. In: American Control Conference, New York, EE.UU (2007) Google Scholar
  11. 11.
    Baños, A., Dormido, S., Barreiro, A.: Stability analysis of reset control systems with reset band. In: 3rd IFAC Conference on Analysis and Design of Hybrid Systems, Zaragoza, España (2009) Google Scholar
  12. 12.
    Baños, A., Barreiro, A.: Delay-independent stability of reset systems. IEEE Trans. Autom. Control 54(2), 341–346 (2009) CrossRefGoogle Scholar
  13. 13.
    Baños, A., Barreiro, A.: Limit cycles analysis in reset systems with reset band. Nonlinear Anal. Hybrid Syst. (2010). doi: 10.1016/j.nahs.2010.07.004 Google Scholar
  14. 14.
    Baños, A., Carrasco, J., Barreiro, A.: Reset times-dependent stability of reset control systems. IEEE Trans. Autom. Control 56(1), pp. 217–223 (2011) CrossRefGoogle Scholar
  15. 15.
    Baños, A., Mulero, J.I.: On the well-posedness of reset control systems. Technical Report TR-DIS-1-2011, University of Murcia (2011) Google Scholar
  16. 16.
    Barreiro, A., Baños, A.: Delay-dependent stability of reset systems. Automatica 46(1), 216–221 (2010) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Beker, O., Hollot, C.V., Chait, Y., Han, H.: Plant with integrator: an example of reset control overcoming limitations of linear systems. IEEE Trans. Autom. Control 46(11), 1797–1799 (2001) MATHCrossRefGoogle Scholar
  18. 18.
    Beker, O., Hollot, C.V., Chait, Y., Han, H.: Fundamental properties of reset control systems. Automatica 40, 905–915 (2004) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Carrasco, J., Baños, A., van der Schaft, A.: A passivity approach to reset control of nonlinear systems. In: 34th Annual Conference of the IEEE Industrial Electronics Society, Orlando, EE.UU (2008) Google Scholar
  20. 20.
    Carrasco, J., Baños, A., Barreiro, A.: Stability of reset control systems with inputs. In: 16th IEEE Mediterranean Conference on Control and Automation, Ajaccio, Francia (2008) Google Scholar
  21. 21.
    Chait, Y., Hollot, C.V.: On Horowitz’s contributions to reset control. Int. J. Robust Nonlinear Control 12, 335–355 (2002) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Clegg, J.C.: A nonlinear integrator for servomechanism. Trans. AIEE, Part II 77, 41–42 (1958) Google Scholar
  23. 23.
    Fernández, A.F., Barreiro, A., Baños, A., Carrasco, J.: Reset control for passive teleoperation applications in process control. In: 34th Annual Conference of the IEEE Industrial Electronics Society, Orlando, EE.UU (2008) Google Scholar
  24. 24.
    Fernández, A.F., Barreiro, A., Baños, A., Carrasco, J.: Reset control for passive bilateral teleoperation. IEEE Trans. Ind. Electron. (2010). doi: 10.1109/TIE.2010.2077610 Google Scholar
  25. 25.
    Feuer, A., Goodwin, G.C., Salgado, M.: Potential benefits of hybrid control for linear time invariant plants. In: Proc. Amer. Control Conf., Alburquerque, pp. 2790–2794 (1997) Google Scholar
  26. 26.
    Goebel, R., Sanfelice, R., Teel, A.R.: Hybrid dynamical systems. IEEE Control Syst. Mag. (2009) Google Scholar
  27. 27.
    Goodwin, G.C., Graebe, S.F., Salgado, M.E.: Control System Design. Prentice-Hall, Upper Saddle River (2001) Google Scholar
  28. 28.
    Guo, Y., Wang, Y., Zheng, J., Xie, L.: Stability analysis, design and application of reset control systems. In: Proceedings of the IEEE Int. Conf. on Control and Automation, Guangzhou, China, May 30–June 1 (2007) Google Scholar
  29. 29.
    Haddad, W.M., Nersesov, S.G., Chellaboina, V.S.: Energy-based control for hybrid port-controlled Hamiltonian systems. Automatica 39, 1425–1435 (2003) MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Haddad, W.M., Chellaboina, V.S., Nersesov, S.G.: Impulsive and Hybrid Dynamical Systems. Stability, Dissipativity and Control. Princeton University Press, Princeton (2006) MATHGoogle Scholar
  31. 31.
    Horowitz, I.M., Rosenbaum, P.: Nonlinear design for cost of feedback reduction in systems with large parameter uncertainty. Int. J. Control 24(6), 977–1001 (1975) CrossRefGoogle Scholar
  32. 32.
    Krishnan, K.R., Horowitz, I.M.: Synthesis of a nonlinear feedback system with significant plant-ignorance for prescribed system tolerances. Int. J. Control 19(4), 689–706 (1974) MATHCrossRefGoogle Scholar
  33. 33.
    Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989) MATHGoogle Scholar
  34. 34.
    Loquen, T., Tarbouriech, S., Prieur, Ch.: Stability of reset control systems with nonzero reference. In: Proceedings of the 47th IEEE Conf. on Decision and Control, Cancun, Mexico (2008) Google Scholar
  35. 35.
    Middleton, R.H., Graebe, S.F.: Slow stable open loop poles: to cancel or not to cancel. Automatica 35, 877–886 (1999) MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Nešić, D., Zaccarian, L., Teel, A.R.: Stability properties of reset systems. Automatica 44(8), 2019–2026 (2008) MathSciNetCrossRefGoogle Scholar
  37. 37.
    Seron, M., Braslavsky, J.H., Goodwin, G.C.: Fundamental Limitations in Filtering and Control. Springer, London (1997) MATHCrossRefGoogle Scholar
  38. 38.
    Vidal, A., Baños, A., Moreno, J.C., Berenguel, M.: PI + CI compensation with variable reset: application on solar collector fields. In: 34th Annual Conference of the IEEE Industrial Electronics Society, Orlando, EE.UU (2008) Google Scholar
  39. 39.
    Vidal, A., Baños, A.: QFT-based design of PI + CI reset compensator: applications in process control. In: 16th IEEE Mediterranean Conference on Control and Automation, Ajaccio, Francia (2008) Google Scholar
  40. 40.
    Vidal, A., Baños, A.: Stability of reset control systems with variable reset: application to PI + CI compensation. In: European Control Conference, Budapest, Hungary (2009) Google Scholar
  41. 41.
    Vidal, A., Baños, A.: Reset compensation applied on industrial heat exchangers. In: 14th IEEE International Conference on Emerging Technologies and Factory Automation, Mallorca, Spain (2009) Google Scholar
  42. 42.
    Vidal, A., Baños, A.: Reset compensation for temperature control: experimental applications on heat exchangers. Chem. Eng. J. 159(1–3), 170–181 (2010) CrossRefGoogle Scholar
  43. 43.
    Yang, T.: Impulsive Control Theory. Lecture Notes in Control and Information Sciences, vol. 272. Springer, Berlin (2001) MATHGoogle Scholar
  44. 44.
    Zaccarian, L., Nesic, D., Teel, A.R.: First order reset elements and the Clegg integrator revisited. Proc. Am. Control Conf. 1, 563–568 (2005) CrossRefGoogle Scholar
  45. 45.
    Zheng, J., Guo, Y., Fu, M., Wang, Y., Xie, L.: Improved reset control design for a PZT positioning stage. In: Proceedings of the 16th IEEE Int. Conf. on Control Applications, Singapore (2007) Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Fac. Informática, Depto. Informática y Sistemas, Grupo de Informática IndustrialUniversidad de MurciaMurciaSpain
  2. 2.Depto. Ingeniería de Sistemas y Automática, ETSIIUniversidad de VigoVigoSpain

Personalised recommendations