Skip to main content

Variable-Order Fractional Signal Processing

  • Chapter

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

Chapter 6 introduces variable-order fractional signal processing techniques. The simulation of multifractional processes was realized by replacing the constant-order fractional integrator with a variable-order integrator. So, the generated multifractional processes exhibit the local memory property. Similarly, variable-order fractional system models were built by replacing the constant-order long memory parameter d with a variable-order local memory parameter d t . The variable-order fractional system models can characterize the local memory of the fractional processes. A physical experimental study of the temperature-dependent variable-order fractional integrator and differentiator was introduced at the end of this chapter. Some potential applications of the variable-order fractional integrator and differentiator are briefly discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Beine, M., Laurent, S.: Structural change and long memory in volatility: new evidence from daily exchange rates. In: Econometric Society World Congress 2000 Contributed Papers 2013/10473, ULB—Universite Libre de Bruxelles (2000)

    Google Scholar 

  2. Boutahar, M., Dufrénot, G., Péguin-Feissolle, A.: A simple fractionally integrated model with a time-varying long memory parameter d t . Comput. Econ. 31(3), 225–241 (2008)

    Article  MATH  Google Scholar 

  3. Fukami, T., Chen, R.-H.: Crystal structure and electrical conductivity of LiN2H5SO4 at high temperature. Jpn. J. Appl. Phys. 37(3A), 925–929 (1998)

    Article  Google Scholar 

  4. Glöckle, W.G., Nonnenmacher, T.F.: A fractional calculus approach to self-similar protein dynamics. Biophys. J. 68(1), 46–53 (1995)

    Article  Google Scholar 

  5. Koutsoyiannis, D.: Climate change, the Hurst phenomenon, and hydrological statistics. Hydrol. Sci. J. 48(1), 3–24 (2003)

    Article  Google Scholar 

  6. Lim, S.C.: Fractional Brownian motion and multifractional Brownian motion of Riemann-Liouville type. J. Phys. A, Math. Gen. 34, 1301–1310 (2001)

    Article  MATH  Google Scholar 

  7. Mukhopadhyay, S.: Fractional order modeling and control: development of analog strategies for plasma position control of the STOR-1M Tokamak. Master’s thesis, Utah State University, Logan, Utah, USA (2009)

    Google Scholar 

  8. Pesquet-Popescu, B., Pesquet, J.-C.: Synthesis of bidimensional α-stable models with long-range dependence. Signal Process. 82(12), 1927–1940 (2002)

    Article  MATH  Google Scholar 

  9. Quanser: Heat flow experiment system identification and frequency domain design. Heat Flow Experiment System Manuals (2002). http://www.quanser.com/english/downloads/products/Heatflow.pdf

  10. Ray, B.K., Tsay, R.S.: Bayesian methods for change-point detection in long-range dependent processes. J. Time Ser. Anal. 23(6), 687–705 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Smit, W., de Vries, H.: Rheological models containing fractional derivatives. Rheol. Acta 9(4), 525–534 (1970)

    Article  Google Scholar 

  12. Sun, H.: Predictor-corrector method for variable-order, random-order fractional relaxation equation. MATLAB Central-File Exchange. http://www.mathworks.com/matlabcentral/fileexchange/26407 (2010)

  13. Sun, H., Chen, W., Chen, Y.Q.: Variable-order fractional differential operators in anomalous diffusion modeling. Phys. A, Stat. Mech. Appl. 388(21), 4586–4592 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Sheng .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Sheng, H., Chen, Y., Qiu, T. (2012). Variable-Order Fractional Signal Processing. In: Fractional Processes and Fractional-Order Signal Processing. Signals and Communication Technology. Springer, London. https://doi.org/10.1007/978-1-4471-2233-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2233-3_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2232-6

  • Online ISBN: 978-1-4471-2233-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics