Skip to main content

Part of the book series: Signals and Communication Technology ((SCT))

  • 1856 Accesses

Abstract

Chapter 10 studies the optimal non-delayed fractional-order damping, time-delayed fractional-order damping, and optimal distributed order fractional damping based on ISE, ITSE, IAE and ITAE performance criteria. The comparisons of the step responses of the integer-order and the three types of fractional-order damping systems indicate that the optimal fractional-order damping systems achieve much better step responses than optimal integer-order systems in some instances, but sometimes the integer-order damping systems performs as well as fractional-order ones. Furthermore, time delay can sometimes be used to gain benefit in control systems, and, especially, the fractional-order damping plus properly chosen delay can bring outstanding performance. Time-delayed fractional-order damping systems can produce a faster rise time and less overshoot than others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brančík, L.: Programs for fast numerical inversion of Laplace transforms in MATLAB language environment. In: Proceedings of the 7th Conference MATLAB’99, Prague, Czech Republic, Nov. 1999, pp. 27–39 (1999)

    Google Scholar 

  2. Cao, Y.: Correcting the minimum ITAE standard forms of zero-displacement-error systems. J. Zhejiang Univ. Sci. 23(4), 550–559 (1989)

    Google Scholar 

  3. Dalir, M., Bashour, M.: Applications of fractional calculus. Appl. Math. Sci. 4(21–24), 1021–1032 (2010)

    MathSciNet  MATH  Google Scholar 

  4. D’Azzo, J.J., Houpis, C.H., Sheldon, S.N.: Linear Control System Analysis and Design, 5th edn. CRC Press, Boca Raton (2003)

    Book  MATH  Google Scholar 

  5. De Espíndola, J.J., Bavastri, C.A., De Oliveira Lopes, E.M.: Design of optimum systems of viscoelastic vibration absorbers for a given material based on the fractional calculus model. J. Vib. Control 14(9–10), 1607–1630 (2008)

    Article  MathSciNet  Google Scholar 

  6. Dorf, R.C.: Modern Control Systems. Addison-Wesley/Longman, Reading/Harlow (1989)

    MATH  Google Scholar 

  7. Hartley, T.T., Lorenzo, C.F.: A frequency-domain approach to optimal fractional-order damping. Nonlinear Dyn. 38(1–2), 69–84 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Koeller, R.C.: Applications of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51(2), 299–307 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Komkov, V.: Optimal Control Theory for the Damping of Vibrations of Simple Elastic Systems. Springer, Berlin (1972)

    MATH  Google Scholar 

  10. Lion, A.: On the thermodynamics of fractional damping elements. Contin. Mech. Thermodyn. 9(2), 83–96 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lorenzo, C.F., Hartley, T.T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29(1–4), 57–98 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ogata, K.: Modern Control Engineering. Prentice-Hall, Englewood Cliffs (1970)

    Google Scholar 

  13. Padovan, J., Guo, Y.: General response of viscoelastic systems modelled by fractional operators. J. Franklin Inst. 325(2), 247–275 (1988)

    Article  MATH  Google Scholar 

  14. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  15. Rossikhin, Y.A., Shitikova, M.V.: Application of fractional derivatives to the analysis of damped vibrations of viscoelastic single mass systems. Acta Mech. 120(1–4), 109–125 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rüdinger, F.: Tuned mass damper with fractional derivative damping. Eng. Struct. 28(13), 1774–1779 (2006)

    Article  Google Scholar 

  17. Shafieezadeh, A., Ryan, K., Chen, Y.Q.: Fractional order filter enhanced LQR for seismic protection of civil structures. J. Comput. Nonlinear Dyn. 3(2), 020201.1–1021404.7 (2008)

    Google Scholar 

  18. Sheng, H., Li, Y., Chen, Y.Q.: Application of numerical inverse Laplace transform algorithms in fractional calculus. J. Franklin Inst. 348(2), 315–330 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shokooh, A.: A comparison of numerical methods applied to a fractional model of damping materials. J. Vib. Control 5(3), 331–354 (1999)

    Article  Google Scholar 

  20. Tavazoei, M.S.: Notes on integral performance indices in fractional-order control systems. J. Process Control 20(3), 285–291 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Sheng .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Sheng, H., Chen, Y., Qiu, T. (2012). Optimal Fractional-Order Damping Strategies. In: Fractional Processes and Fractional-Order Signal Processing. Signals and Communication Technology. Springer, London. https://doi.org/10.1007/978-1-4471-2233-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2233-3_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2232-6

  • Online ISBN: 978-1-4471-2233-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics