Representation Limits of Mean Value Engine Models

  • Carlos Guardiola
  • Antonio Gil
  • Benjamín Pla
  • Pedro Piqueras
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 418)


Mean Value Engine Models (MVEMs) have been widely used for internal combustion engine modelling with main application areas on the design and development of engine control systems. However, modellers must be aware of the limitations of these MVEMs which are associated to the simplification of the geometry and the time scale, and the partial consideration of the physical phenomena involved. This chapter analyses through several real-life examples the effects of some of the most important simplifications done in MVEMs.


Pressure Drop Diesel Engine Internal Combustion Engine Centrifugal Compressor Engine Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Heywood, J.B.: Internal combustion engine fundamentals. Mcgraw-Hill, New York (1989)Google Scholar
  2. 2.
    Rakopoulos, C.D., Giakoumis, E.G.: Diesel engine transient operation: principles of operation and simulation analysis. Springer, Berlin (2009)Google Scholar
  3. 3.
    Rakopoulos, C.D., Giakoumis, E.G.: Review of thermodynamic diesel engine simulations under transient operating conditions. SAE Paper 2006-01-0884 (2006)Google Scholar
  4. 4.
    Tap, F.A., Angel, B.N.: Including detailed chemistry effects in industrial 3D engine simulations. In: International Conference on Diesel Engine, Lyon (2006)Google Scholar
  5. 5.
    Haworth, D.C.: A review of turbulent combustion modeling for multidimensional in-cylinder CFD. SAE Paper 2005-01-0993 (2005)Google Scholar
  6. 6.
    Eriksson, L., Wahlström, J., Klein, M.: Physical modeling of turbocharged engines and parameter identification. In: del Re, L., et al. (eds.) Automotive Model Predictive Control: Models, Methods and Applications, pp. 53–71. Springer, Berlin (2010)CrossRefGoogle Scholar
  7. 7.
    Karlsson, J., Fredriksson, J.: Cylinder-by-cylinder engine models Vs mean value engine models for use in powertrain control applications. SAE Paper 1999-01-0906 (1999)Google Scholar
  8. 8.
    Stobart, R.: Control oriented models for exhaust gas aftertreatment; a review and prospects. SAE paper 2003-01-1004 (2003)Google Scholar
  9. 9.
    Hirsch, M., Oppenauer, K., del Re, L.: Dynamic engines emission models. In: Automotive Model Predictive Control: Models, Methods and Applications, pp. 73–88. Springer, Berlin (2010)CrossRefGoogle Scholar
  10. 10.
    Arregle, J., Lopez, J.J., Guardiola, C., Monin, C.: On board NOx prediction in diesel engines: a physical approach. In: del Re, L., et al. (eds.) Automotive Model Predictive Control: Models, Methods and Applications, pp. 25–36. Springer, Berlin (2010)CrossRefGoogle Scholar
  11. 11.
    Zinner, K.: Supercharging of internal combustion engines. Springer, Berlin (1978)Google Scholar
  12. 12.
    Winterbone, D.E., Pearson, R.J.: Turbocharger turbine performance unsteady flow—a review of experimental results and proposed models. Inst. Mech. Eng. paper C554/031/98 (1998)Google Scholar
  13. 13.
    Macián, V., Luján, J.M., Bermúdez, V., Guardiola, C.: Exhaust pressure pulsation observation from turbocharger instantaneous speed measurement. Measurement Science and Technology 15, 1185–1194 (2004)CrossRefGoogle Scholar
  14. 14.
    Chevalier, A., Müller, M., Hendricks, E.: On the validity of mean value engine models during transient operation. SAE paper 2000-01-1261 (2000)Google Scholar
  15. 15.
    Torregrosa, A.J., Galindo, J., Guardiola, C., Varnier, O.: A combined experimental and modelling methodology for intake line evaluation in turbocharged diesel engines. International Journal of Automotive Technology (2011)Google Scholar
  16. 16.
    Masoudi, M.: Hydrodynamics of diesel particulate filters. SAE Technical Paper 2002-01-1016 (2002)Google Scholar
  17. 17.
    Piqueras, P.: Contribución al modelado termofluidodinámico de filtros de partículas diesel de flujo de pared, PhD. Thesis (text in spanish), Universidad Politécnica de Valencia (2010)Google Scholar
  18. 18.
    OpenWAM website, CMT-Motores Térmicos (Universidad Politécnica de Valencia), (Cited June 1, 2010)
  19. 19.
    Konstandopoulos, A.G., Skaperdas, E., Warren, J., Allansson, R.: Optimized filter design and selection criteria for continuously regenerating diesel particulate traps. SAE Technical Paper 1999-01-0468 (1999)Google Scholar
  20. 20.
    Payri, F., Desantes, J.M., Galindo, J., Serrano, J.R.: Exhaust manifold of a supercharged reciprocating internal combustion engine (text in spanish), Patent application P200900482. Priority date 13/02/2009. Oficina Española de Patentes y Marcas (2009)Google Scholar
  21. 21.
    Windsor, R.E., Baumgard, K.J.: Internal combustion engine with dual particulate traps ahead of turbocharger. Patent Application Publication, US 2009/0151328 A1, United States (2009)Google Scholar
  22. 22.
    Payri, F., Luján, J.M., Climent, H., Pla, B.: Effects of the intake charge distribution in HSDI engines. SAE Paper 2010-01-1119 (2010)Google Scholar
  23. 23.
    Beatrice, C., Avolio, G., Bertoli, C., Del Giacomo, N., Guido, C., Migliaccio, M.: Critical aspects on the control in the low temperature combustion systems for high performance DI diesel engines. Oil & Gas Science and Technology 62, 471–482 (2007)CrossRefGoogle Scholar
  24. 24.
    Siewert, R.M., Krieger, R.B., Huebler, M.S., Baruah, P.C., Khalighi, B., Wesslau, M.: Modifying an Intake Manifold to Improve Cylinder-to-Cylinder EGR Distribution in a DI diesel Engine Using Combined CFD and Engine Experiments. SAE Paper 2001-01-3685 (2001)Google Scholar
  25. 25.
    Wehr, D., Huurdeman, B., Spennemann, A.: EGR- A challenge for modern plastic intake manifolds. SAE Paper 2002-01-0902 (2002)Google Scholar
  26. 26.
    Luján, J.M., Galindo, J., Serrano, J.R., Pla, B.: A methodology to identify the intake charge cylinder-to-cylinder distribution in turbocharged direct injection diesel engines. Meas. Sci. Technol. 19, 1–11 (2008)CrossRefGoogle Scholar
  27. 27.
    Galindo, J., Serrano, J.R., Guardiola, C., Cervelló, C.: Surge limit definition in a specific test bench for the characterization of automotive turbochargers. Exp. Thermal Fluid Sci. 30, 485–496 (2006)CrossRefGoogle Scholar
  28. 28.
    Galindo, J., Serrano, J.R., Climent, H., Tiseira, A.: Experiments and modelling of surge in small centrifugal compressor for automotive engines. Exp. Thermal Fluid Sci. 32, 818–826 (2007)CrossRefGoogle Scholar
  29. 29.
    Kim, Y., Engeda, A., Aungier, R., Derinzi, G.: The influence of inlet flow distortion on the performance of the centrifugal compressor and development of an improved inlet using numerical simulations. Proc. of the Inst. Mech. Eng. Part A: J. of Power and Energy 215, 323–338 (2001)CrossRefGoogle Scholar
  30. 30.
    Galindo, J., Serrano, J.R., Arnau, F., Piqueras, P.: Description and analysis of a onedimensional gas-dynamic model with independent time discretization. J. Eng. Gas Turb. Power - Trans. ASME 131, 34504 (2009)CrossRefGoogle Scholar
  31. 31.
    Galindo, J., Climent, H., Guardiola, C., Tiseira, A.: On the effect of pulsating flow on surge margin of small centrifugal compressors for automotive engines. Exp. Thermal Fluid Sci. 33, 1163–1171 (2009)CrossRefGoogle Scholar

Copyright information

© Springer London 2012

Authors and Affiliations

  • Carlos Guardiola
    • 1
  • Antonio Gil
    • 1
  • Benjamín Pla
    • 1
  • Pedro Piqueras
    • 1
  1. 1.CMT-Motores TérmicosUniversidad Politécnica de ValenciaSpain

Personalised recommendations