Skip to main content

Deciphering the Molecular and Cellular Basis for Dissemination of Diffuse Low-Grade Gliomas

  • Chapter
  • First Online:
  • 1279 Accesses

Abstract

Although initially silent, diffuse low-grade gliomas (DLGGs) always progress into a more aggressive pathology, eventually causing death of the patient. Their diffusive nature makes them difficult to fully remove by the surgical approach. Understanding the molecular pathways ruling DLGG dissemination would open up new lines of treatments aiming at limiting their spread throughout the brain. However, the rare occurrence of these tumors, the difficulties in growing them in culture, and the quasi-absence of DLGG-derived cell lines have definitely impeded the progress of knowledge on this topic. This explains the very few data available today on DLGG invasion and calls for more efforts from the scientific community to tackle this complex challenge. Here after reporting the main studies which have approached the problematic of DLGG dissemination, we propose some analogies with oligodendrocyte precursor migration and suggest some promising directions to take. We then raise central issues making DLGG dissemination difficult to study with our present state of knowledge and technical possibilities. Deciphering the migratory strategies adopted by DLGG to invade the brain would be a major advance for the development of therapies aiming at maintaining DLGG in a confined and resectable nutshell.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Virchow R. Die krankhaften Geschwülste. Dreissig Vorlesungen, gehalten während des Wintersemesters 1862–1863 an Der Universität Zu Berlin. Berlin: A Hirschwald; 1863.

    Google Scholar 

  2. Giese A, Bjerkvig R, Berens ME, Westphal M. Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol. 2003;21(8):1624–36.

    Article  PubMed  CAS  Google Scholar 

  3. Berens ME, Giese A. “…those left behind.” Biology and oncology of invasive glioma cells. Neoplasia. 1999;1(3):208–19.

    Article  PubMed  CAS  Google Scholar 

  4. Teodorczyk M, Martin-Villalba A. Sensing invasion: cell surface receptors driving spreading of glioblastoma. J Cell Physiol. 2010;222(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  5. Tate MC, Aghi MK. Biology of angiogenesis and invasion in glioma. Neurotherapeutics. 2009;6(3):447–57.

    Article  PubMed  CAS  Google Scholar 

  6. Sontheimer H. An unexpected role for ion channels in brain tumor metastasis. Exp Biol Med (Maywood). 2008;233(7):779–91.

    Article  CAS  Google Scholar 

  7. Sontheimer H. A role for glutamate in growth and invasion of primary brain tumors. J Neurochem. 2008;105(2):287–95.

    Article  PubMed  CAS  Google Scholar 

  8. Hoelzinger DB, Demuth T, Berens ME. Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. J Natl Cancer Inst. 2007;99(21):1583–93.

    Article  PubMed  CAS  Google Scholar 

  9. Salhia B, Tran NL, Symons M, Winkles JA, Rutka JT, Berens ME. Molecular pathways triggering glioma cell invasion. Expert Rev Mol Diagn. 2006;6(4):613–26.

    Article  PubMed  CAS  Google Scholar 

  10. Nakada M, Nakada S, Demuth T, Tran NL, Hoelzinger DB, Berens ME. Molecular targets of glioma invasion. Cell Mol Life Sci. 2007;64(4):458–78.

    Article  PubMed  CAS  Google Scholar 

  11. Demuth T, Berens ME. Molecular mechanisms of glioma cell migration and invasion. J Neurooncol. 2004;70(2):217–28.

    Article  PubMed  Google Scholar 

  12. Bellail AC, Hunter SB, Brat DJ, Tan C, Van Meir EG. Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int J Biochem Cell Biol. 2004;36(6):1046–69.

    Article  PubMed  CAS  Google Scholar 

  13. Gunther W, Skaftnesmo KO, Arnold H, Terzis AJ. Molecular approaches to brain tumour invasion. Acta Neurochir (Wien). 2003;145(12):1029–36.

    Article  CAS  Google Scholar 

  14. Visted T, Enger PO, Lund-Johansen M, Bjerkvig R. Mechanisms of tumor cell invasion and angiogenesis in the central nervous system. Front Biosci. 2003;8:e289–304.

    Article  PubMed  CAS  Google Scholar 

  15. Weiss WA, Burns MJ, Hackett C, Aldape K, Hill JR, Kuriyama H, et al. Genetic determinants of malignancy in a mouse model for oligodendroglioma. Cancer Res. 2003;63(7):1589–95.

    PubMed  CAS  Google Scholar 

  16. Farin A, Suzuki SO, Weiker M, Goldman JE, Bruce JN, Canoll P. Transplanted glioma cells migrate and proliferate on host brain vasculature: a dynamic analysis. Glia. 2006;53(8):799–808.

    Article  PubMed  Google Scholar 

  17. Oellers P, Schallenberg M, Stupp T, Charalambous P, Senner V, Paulus W, et al. A coculture assay to visualize and monitor interactions between migrating glioma cells and nerve fibers. Nat Protoc. 2009;4(6):923–7.

    Article  PubMed  CAS  Google Scholar 

  18. Giese A, Laube B, Zapf S, Mangold U, Westphal M. Glioma cell adhesion and migration on human brain sections. Anticancer Res. 1998;18(4A):2435–47.

    PubMed  CAS  Google Scholar 

  19. Giese A, Kluwe L, Laube B, Meissner H, Berens ME, Westphal M. Migration of human glioma cells on myelin. Neurosurgery. 1996;38(4):755–64.

    Article  PubMed  CAS  Google Scholar 

  20. Palfi S, Swanson KR, De Bouard S, Chretien F, Oliveira R, Gherardi RK, et al. Correlation of in vitro infiltration with glioma histological type in organotypic brain slices. Br J Cancer. 2004;91(4):745–52.

    PubMed  CAS  Google Scholar 

  21. de Bouard S, Christov C, Guillamo JS, Kassar-Duchossoy L, Palfi S, Leguerinel C, et al. Invasion of human glioma biopsy specimens in cultures of rodent brain slices: a quantitative analysis. J Neurosurg. 2002;97(1):169–76.

    Article  PubMed  Google Scholar 

  22. Colin C, Baeza N, Tong S, Bouvier C, Quilichini B, Durbec P, et al. In vitro identification and functional characterization of glial precursor cells in human gliomas. Neuropathol Appl Neurobiol. 2006;32(2):189–202.

    Article  PubMed  CAS  Google Scholar 

  23. Bernstein JJ, Goldberg WJ, Laws Jr ER. Migration of fresh human malignant astrocytoma cells into hydrated gel wafers in vitro. J Neurooncol. 1994;18(2):151–61.

    Article  PubMed  CAS  Google Scholar 

  24. Ducray F, Idbaih A, de Reynies A, Bieche I, Thillet J, Mokhtari K, et al. Anaplastic oligodendrogliomas with 1p19q codeletion have a proneural gene expression profile. Mol Cancer. 2008;7:41.

    Article  PubMed  Google Scholar 

  25. Patt S, Labrakakis C, Bernstein M, Weydt P, Cervos-Navarro J, Nisch G, et al. Neuron-like physiological properties of cells from human oligodendroglial tumors. Neuroscience. 1996;71(2):601–11.

    Article  PubMed  CAS  Google Scholar 

  26. Liu XY, Gerges N, Korshunov A, Sabha N, Khuong-Quang DA, Fontebasso AM, et al. Frequent ATRX mutations and loss of expression in adult diffuse astrocytic tumors carrying IDH1/IDH2 and TP53 mutations. Acta Neuropathol. 2012;124(5):615–25.

    Article  PubMed  CAS  Google Scholar 

  27. Sahm F, Koelsche C, Meyer J, Pusch S, Lindenberg K, Mueller W, et al. CIC and FUBP1 mutations in ­oligodendrogliomas, oligoastrocytomas and astrocytomas. Acta Neuropathol. 2012;123(6):853–60.

    Article  PubMed  CAS  Google Scholar 

  28. Persson AI, Petritsch C, Swartling FJ, Itsara M, Sim FJ, Auvergne R, et al. Non-stem cell origin for oligodendroglioma. Cancer Cell. 2010;18(6):669–82.

    Article  PubMed  CAS  Google Scholar 

  29. Bouvier-Labit C, Liprandi A, Monti G, Pellissier JF, Figarella-Branger D. CD44H is expressed by cells of the oligodendrocyte lineage and by oligodendrogliomas in humans. J Neurooncol. 2002;60(2):127–34.

    Article  PubMed  Google Scholar 

  30. Jothy S. CD44 and its partners in metastasis. Clin Exp Metastasis. 2003;20(3):195–201.

    Article  PubMed  CAS  Google Scholar 

  31. Radotra B, McCormick D. Glioma invasion in vitro is mediated by CD44-hyaluronan interactions. J Pathol. 1997;181(4):434–8.

    Article  PubMed  CAS  Google Scholar 

  32. Radotra B, McCormick D. CD44 is involved in migration but not spreading of astrocytoma cells in vitro. Anticancer Res. 1997;17(2A):945–9.

    PubMed  CAS  Google Scholar 

  33. Back SA, Tuohy TM, Chen H, Wallingford N, Craig A, Struve J, et al. Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med. 2005;11(9):966–72.

    PubMed  CAS  Google Scholar 

  34. McDonald JM, Dunlap S, Cogdell D, Dunmire V, Wei Q, Starzinski-Powitz A, et al. The SHREW1 gene, frequently deleted in oligodendrogliomas, functions to inhibit cell adhesion and migration. Cancer Biol Ther. 2006;5(3):300–4.

    Article  PubMed  CAS  Google Scholar 

  35. Rostomily RC, Born DE, Beyer RP, Jin J, Alvord Jr EC, Mikheev AM, et al. Quantitative proteomic analysis of oligodendrogliomas with and without 1p/19q deletion. J Proteome Res. 2010;9(5):2610–8.

    Article  PubMed  CAS  Google Scholar 

  36. de Castro F, Bribian A. The molecular orchestra of the migration of oligodendrocyte precursors during development. Brain Res. 2005;49(2):227–41.

    Article  Google Scholar 

  37. Miyamoto Y, Yamauchi J, Tanoue A. Cdk5 phosphorylation of WAVE2 regulates oligodendrocyte precursor cell migration through nonreceptor tyrosine kinase Fyn. J Neurosci. 2008;28(33):8326–37.

    Article  PubMed  CAS  Google Scholar 

  38. Yamazaki D, Kurisu S, Takenawa T. Involvement of Rac and Rho signaling in cancer cell motility in 3D substrates. Oncogene. 2009;28(13):1570–83.

    Article  PubMed  CAS  Google Scholar 

  39. Liu J, Zhao Y, Sun Y, He B, Yang C, Svitkina T, et al. Exo70 stimulates the Arp2/3 complex for lamellipodia formation and directional cell migration. Curr Biol. 2012;22(16):1510–5.

    Article  PubMed  CAS  Google Scholar 

  40. Kurisu S, Suetsugu S, Yamazaki D, Yamaguchi H, Takenawa T. Rac-WAVE2 signaling is involved in the invasive and metastatic phenotypes of murine melanoma cells. Oncogene. 2005;24(8):1309–19.

    Article  PubMed  CAS  Google Scholar 

  41. Iwaya K, Norio K, Mukai K. Coexpression of Arp2 and WAVE2 predicts poor outcome in invasive breast carcinoma. Mod Pathol. 2007;20(3):339–43.

    Article  PubMed  CAS  Google Scholar 

  42. Spassky N, de Castro F, Le Bras B, Heydon K, Queraud-LeSaux F, Bloch-Gallego E, et al. Directional guidance of oligodendroglial migration by class 3 semaphorins and netrin-1. J Neurosci. 2002;22(14):5992–6004.

    PubMed  CAS  Google Scholar 

  43. Karayan-Tapon L, Wager M, Guilhot J, Levillain P, Marquant C, Clarhaut J, et al. Semaphorin, neuropilin and VEGF expression in glial tumours: SEMA3G, a prognostic marker? Br J Cancer. 2008;99(7):1153–60.

    Article  PubMed  CAS  Google Scholar 

  44. Bagci T, Wu JK, Pfannl R, Ilag LL, Jay DG. Autocrine semaphorin 3A signaling promotes glioblastoma dispersal. Oncogene. 2009;28(40):3537–50.

    Article  PubMed  CAS  Google Scholar 

  45. Nasarre C, Koncina E, Labourdette G, Cremel G, Roussel G, Aunis D, et al. Neuropilin-2 acts as a modulator of Sema3A-dependent glioma cell migration. Cell Adh Migr. 2009;3(4):383–9.

    Article  PubMed  Google Scholar 

  46. Olivier C, Cobos I, Perez Villegas EM, Spassky N, Zalc B, Martinez S. Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo. Development. 2001;128(10):1757–69.

    PubMed  CAS  Google Scholar 

  47. Tchoghandjian A, Baeza-Kallee N, Beclin C, Metellus P, Colin C, Ducray F, et al. Cortical and subventricular zone glioblastoma-derived stem-like cells display different molecular profiles and differential in vitro and in vivo properties. Ann Surg Oncol. 2012;19 Suppl 3:608–19.

    Article  Google Scholar 

  48. Pallud J, Varlet P, Devaux B, Geha S, Badoual M, Deroulers C, et al. Diffuse low-grade oligodendrogliomas extend beyond MRI-defined abnormalities. Neurology. 2010;74(21):1724–31.

    Article  PubMed  CAS  Google Scholar 

  49. Capper D, Zentgraf H, Balss J, Hartmann C, von Deimling A. Monoclonal antibody specific for IDH1 R132H mutation. Acta Neuropathol. 2009;118(5):599–601.

    Article  PubMed  CAS  Google Scholar 

  50. Sahm F, Capper D, Jeibmann A, Habel A, Paulus W, Troost D, et al. Addressing diffuse glioma as a systemic brain disease with single-cell analysis. Arch Neurol. 2012;69(4):523–6.

    Article  PubMed  Google Scholar 

  51. Mariani L, McDonough WS, Hoelzinger DB, Beaudry C, Kaczmarek E, Coons SW, et al. Identification and validation of P311 as a glioblastoma invasion gene using laser capture microdissection. Cancer Res. 2001;61(10):4190–6.

    PubMed  CAS  Google Scholar 

  52. Daumas-Duport C, Varlet P, Tucker ML, Beuvon F, Cervera P, Chodkiewicz JP. Oligodendrogliomas. Part I: patterns of growth, histological diagnosis, clinical and imaging correlations: a study of 153 cases. J Neurooncol. 1997;34(1):37–59.

    Article  PubMed  CAS  Google Scholar 

  53. Kelly PJ, Daumas-Duport C, Scheithauer BW, Kall BA, Kispert DB. Stereotactic histologic correlations of computed tomography- and magnetic resonance imaging-defined abnormalities in patients with glial neoplasms. Mayo Clin Proc. 1987;62(6):450–9.

    Article  PubMed  CAS  Google Scholar 

  54. Amberger VR, Hensel T, Ogata N, Schwab ME. Spreading and migration of human glioma and rat C6 cells on central nervous system myelin in vitro is ­correlated with tumor malignancy and involves a ­metalloproteolytic activity. Cancer Res. 1998;58(1):149–58.

    PubMed  CAS  Google Scholar 

  55. Pernet V, Schwab ME. The role of Nogo-A in axonal plasticity, regrowth and repair. Cell Tissue Res. 2011;349(1):97–104.

    Article  Google Scholar 

  56. Belien AT, Paganetti PA, Schwab ME. Membrane-type 1 matrix metalloprotease (MT1-MMP) enables invasive migration of glioma cells in central nervous system white matter. J Cell Biol. 1999;144(2):373–84.

    Article  PubMed  CAS  Google Scholar 

  57. Giese A, Loo MA, Tran N, Haskett D, Coons SW, Berens ME. Dichotomy of astrocytoma migration and proliferation. Int J Cancer. 1996;67(2):275–82.

    Article  PubMed  CAS  Google Scholar 

  58. Mariani L, Beaudry C, McDonough WS, Hoelzinger DB, Demuth T, Ross KR, et al. Glioma cell motility is associated with reduced transcription of proapoptotic and proliferation genes: a cDNA microarray analysis. J Neurooncol. 2001;53(2):161–76.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe Hugnot PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Hassani, Z., Hugnot, JP. (2013). Deciphering the Molecular and Cellular Basis for Dissemination of Diffuse Low-Grade Gliomas. In: Duffau, H. (eds) Diffuse Low-Grade Gliomas in Adults. Springer, London. https://doi.org/10.1007/978-1-4471-2213-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2213-5_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2212-8

  • Online ISBN: 978-1-4471-2213-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics