Functional Rehabilitation in Patients with Diffuse Low-Grade Glioma (DLGG)

  • Guillaume Herbet
  • Sylvie Moritz-GasserEmail author


A relevant and ethical management of DLGG patients can’t refrain from taking into account cognitive disorders and proposing, if need be, a specific program of cognitive rehabilitation, to allow patients recovering -or maintaining- the best level of quality of life as possible. The slow-growing and infiltrating character of DLGG makes their associated cognitive disorders particularly amenable to rehabilitation, by potentiating or even constraining the mechanisms of functional brain reorganization within complex large-scale neural networks.


DLGG Cognitive disorders Cognitive rehabilitation Distributed interconnected networks Functional brain reorganization Neural plasticity Quality of life 


  1. 1.
    Taphoorn MJB, Klein M. Cognitive deficits in adult patients with brain tumours. Lancet Neurol. 2004;3: 159–68.PubMedCrossRefGoogle Scholar
  2. 2.
    Bartolomei F, Bosma I, Klein M, et al. Disturbed functional connectivity in brain tumour patients: evaluation by graph analysis of synchronization matrices. Clin Neurophysiol. 2006;117(9):2039–49.PubMedCrossRefGoogle Scholar
  3. 3.
    Anderson SW, Damasio H, Tranel D. Neuropsychological impairments associated with lesions caused by tumor or stroke. Arch Neurol. 1990;47(4):397–405.PubMedCrossRefGoogle Scholar
  4. 4.
    High WM, Sander AS, Struchen MA, et al. Rehabilitation for traumatic brain injury. New York: Oxford University Press; 2005.Google Scholar
  5. 5.
    Varona JF, Bermejo F, Guerra JM, et al. Long-term prognosis of ischemic stroke in young adults. Study of 272 cases. J Neurol. 2004;251:1507–14.PubMedCrossRefGoogle Scholar
  6. 6.
    Desmurget M, Bonnetblanc F, Duffau H. Contrasting acute and slow-growing lesions: a new door to brain plasticity. Brain. 2007;130:898–914.PubMedCrossRefGoogle Scholar
  7. 7.
    Duffau H. The “frontal syndrome” revisited: lessons from electrostimulation mapping studies. Cortex. 2012;48:120–31.PubMedCrossRefGoogle Scholar
  8. 8.
    Plaza M, Gatignol P, Leroy M, et al. Speaking without Broca’s area after tumor resection. Neurocase. 2009;15:294–310.PubMedCrossRefGoogle Scholar
  9. 9.
    Marciniak CM, Sliwa JA, Allen W, Heinemann AW, et al. Functional outcomes of persons with brain tumors after inpatient rehabilitation. Arch Phys Med Rehabil. 2001;82:457–63.PubMedCrossRefGoogle Scholar
  10. 10.
    Giordana MT, Clara E. Functional rehabilitation and brain tumour patients. Neurol Sci. 2006;27:240–4.PubMedCrossRefGoogle Scholar
  11. 11.
    Mukand JA, Blackinton DD, Crincoli MG, et al. Incidence of neurologic deficits and rehabilitation of patients with brain tumors. Am J Phys Med Rehabil. 2001;80(5):346–50.PubMedCrossRefGoogle Scholar
  12. 12.
    Gehring K, Sitskoorn MM, Aaronson NK, et al. Interventions for cognitive deficits in adults with brain tumors. Lancet Neurol. 2008;7(6):548–60.PubMedCrossRefGoogle Scholar
  13. 13.
    Gehring K, Sitskoorn MM, Gundy CM, et al. Cognitive rehabilitation in patients with gliomas: a randomized, controlled trial. J Clin Oncol. 2009;27(22):3712–22.PubMedCrossRefGoogle Scholar
  14. 14.
    Huang ME, Wartella JE, Kreutzer JS. Functional outcomes and quality of life in patients with brain tumors: a preliminary report. Arch Phys Med Rehabil. 2001;82(11):1540–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Huang ME, Wartella JE, Kreutzer JS, et al. Functional outcomes and quality of life in patients with brain tumours: a review of the literature. Brain Inj. 2001;15(10):843–56.PubMedCrossRefGoogle Scholar
  16. 16.
    Pace A, Parisi C, Di Lelio M, et al. Home rehabilitation for brain tumor patients. J Exp Clin Cancer Res. 2007;26(3):297–300.PubMedGoogle Scholar
  17. 17.
    Bartolo M, Zucchella C, Pace A, et al. Early rehabilitation after surgery improves functional outcome in inpatients with brain tumours. J Neurooncol. 2012;107(3):537–44.PubMedCrossRefGoogle Scholar
  18. 18.
    Janda M, Steginga S, Dunn J, et al. Unmet supportive care needs and interest in services among patients with a brain tumour and their carers. Patient Educ Couns. 2008;71(2):251–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Zangwill OL. Psychological aspects of rehabilitation in cases of brain injury. Br J Psychol Gen Sect. 1947;37(2):60–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Prigatano GP. Principles of neuropsychological rehabilitation. New York: Oxford University Press; 1999.Google Scholar
  21. 21.
    Robertson IH, Murre JM. Rehabilitation of brain damage: brain plasticity and principles of guided recovery. Psychol Bull. 1999;125(5):544–75.PubMedCrossRefGoogle Scholar
  22. 22.
    Evans JJ. Memory rehabilitation – should we be aiming for restoration or compensation? J Neurol. 2006;253(4):520–1.PubMedCrossRefGoogle Scholar
  23. 23.
    Cicerone KD, Dahlberg C, Kalmar K, et al. Evidence-based cognitive rehabilitation: recommendations for clinical practice. Arch Phys Med Rehabil. 2000;81:1596–615.PubMedCrossRefGoogle Scholar
  24. 24.
    Luria AR. Restoration of function after brain injury. New York: Pergamon Press; 1963.Google Scholar
  25. 25.
    Kim YH, Yoo WK, Ko MH, et al. Plasticity of the attentional network after brain injury and cognitive rehabilitation. Neurorehabil Neural Repair. 2009;23(5):468–77.PubMedCrossRefGoogle Scholar
  26. 26.
    Prigatano GP. In: Halligan PW, Wade DT, editors. A history of cognitive rehabilitation, in effectiveness of rehabilitation for cognitive deficits. New York: Oxford University Press; 2005.Google Scholar
  27. 27.
    Luria AR, Naydin VL, Tsvetkova LS, et al. Restoration of higher cortical function following local brain damage. In: Vinken PJ, Bruyn GW, editors. Handbook of clinical neurology, vol. 3. Amsterdam: North-Holland Publishing Company; 1969. p. 368–433.Google Scholar
  28. 28.
    Power JD, Fair DA, Schlaggar BL, et al. The development of human functional brain networks. Neuron. 2010;67:735–48.PubMedCrossRefGoogle Scholar
  29. 29.
    Majewska AK, Sur M. Plasticity and specificity of cortical processing networks. Trends Neurosci. 2006;29:323–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Vogel AC, Power JD, Petersen SE, et al. Development of brain’s functional network architecture. Neuropsychol Rev. 2010;20:362–75.PubMedCrossRefGoogle Scholar
  31. 31.
    Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behavior. Nat Rev Neurosci. 2009;10:861–72.PubMedCrossRefGoogle Scholar
  32. 32.
    Sagi Y, Tavor I, Hofstetter S, et al. Learning in the fast lane: news insight into neuroplasticity. Neuron. 2012;73:1195–203.PubMedCrossRefGoogle Scholar
  33. 33.
    Johansen-Berg H, Baptista CS, Thomas AG. Human structural plasticity at record speed. Neuron. 2012;73:1058–60.PubMedCrossRefGoogle Scholar
  34. 34.
    Dancause N, Barbay S, Frost FB, et al. Extensive cortical rewiring after brain injury. J Neurosci. 2005;25:10167–79.PubMedCrossRefGoogle Scholar
  35. 35.
    Kantak SS, Stinear JW, Buch ER, et al. Rewiring the brain: potential role of the premotor cortex in motor control, learning, and recovery of function following brain injury. Neurorehabil Neural Repair. 2012;26:282–92.PubMedCrossRefGoogle Scholar
  36. 36.
    Johansen-Berg H. Structural plasticity: rewiring the brain. Curr Biol. 2007;17:141–4.CrossRefGoogle Scholar
  37. 37.
    Klein M, Heimans JJ, Aaronson NK, et al. Effect of radiotherapy and other treatment-related factors on mid-term to long-term cognitive sequelae in low-grade gliomas: a comparative study. Lancet. 2002;360(9343):1361–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Duffau H, Capelle L, Denvil D, et al. Functional recovery after surgical resection of low grade gliomas in eloquent brain: hypothesis of brain compensation. J Neurol Neurosurg Psychiatry. 2003;74(7):901–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Hebb DO. The organization of behavior: a neuropsychological theory. New York: John Wiley & Sons; 1949.Google Scholar
  40. 40.
    Thiebaut de Schotten M, Fflytche DH, Bizzi A, et al. Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography. Neuroimage. 2011;54:49–59.PubMedCrossRefGoogle Scholar
  41. 41.
    Catani M, Ffychte DH. The rises and falls of disconnection syndromes. Brain. 2005;128:2224–39.PubMedCrossRefGoogle Scholar
  42. 42.
    Shinoura N, Suzuki Y, Yamada R, et al. Damage to the right superior longitudinal fasciculus in the inferior parietal lobe plays a role in spatial neglect. Neuropsychologia. 2009;47:2600–3.PubMedCrossRefGoogle Scholar
  43. 43.
    Duffau H. Does post-lesional subcortical plasticity exist in human brain? Neurosci Res. 2009;21:543–9.Google Scholar
  44. 44.
    Yogarajah M, Focke NK, Bonelli SB, et al. The structural plasticity of white matter networks following anterior temporal lobe resection. Brain. 2010;133(Pt 8):2348–64.PubMedCrossRefGoogle Scholar
  45. 45.
    Friston KJ, Frith CD, Fletcher P, et al. Functional topography, multidimensional scaling and functional connectivity in the brain. Cereb Cortex. 1996;6:346–55.CrossRefGoogle Scholar
  46. 46.
    Pievani M, de Haan W, Wu T, et al. Functional network disruption in the degenerative dementias. Lancet Neurol. 2011;10:829–43.PubMedCrossRefGoogle Scholar
  47. 47.
    Petrella JR, Sheldon FC, Prince SE, et al. Default mode network connectivity in stable vs progressive mild ­cognitive impairment. Neurology. 2011;76:511–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Bosma I, Douw L, Bartolomei F, et al. Synchronized brain activity and neurocognitive function in patients with low-grade glioma: a magneto-encephalography study. Neuro Oncol. 2008;10:734–44.PubMedCrossRefGoogle Scholar
  49. 49.
    Martino J, Honma SM, Findlay AM. Resting functional connectivity in patients with brain tumors in eloquent areas. Ann Neurol. 2011;69:521–32.PubMedCrossRefGoogle Scholar
  50. 50.
    Caeyenberghs K, Leemans A, Heitger MH, et al. Graph analysis of functional networks for cognitive control of action in traumatic brain injury. Brain. 2012;135:1293–307.PubMedCrossRefGoogle Scholar
  51. 51.
    Nakamura T, Hilllary FG, Biswal BB. Resting network plasticity following brain injury. PLoS One. 2009;4:e8020.CrossRefGoogle Scholar
  52. 52.
    Mayer AR, Mannel MV, Ling J, et al. Functional connectivity in mild traumatic brain injury. Hum Brain Mapp. 2011;32:1825–35.PubMedCrossRefGoogle Scholar
  53. 53.
    Castellanos NP, Paùl N, Ordonez VE, et al. Reorganization of functional connectivity as a correlate of cognitive recovery in acquired brain injury. Brain. 2010;133:2365–81.PubMedCrossRefGoogle Scholar
  54. 54.
    Goldstein K. After effects of brain injuries in war. New York: Grune & Stratton; 1942.Google Scholar
  55. 55.
    Newcombe F. Very late outcome after focal wartime brain wounds. J Clin Exp Neuropsychol. 1996;18(1):1–23.PubMedCrossRefGoogle Scholar
  56. 56.
    Newcombe F, Brooks N, Baddeley A. Rehabilitation after brain damage: an overview. Int Rehabil Med. 1980;2:133–7.PubMedGoogle Scholar
  57. 57.
    Wilson BA. Cognitive rehabilitation: how it is and how it might be. J Int Neuropsychol Soc. 1997;3:487–96.PubMedGoogle Scholar
  58. 58.
    Ius T, Angelini E, Thiebautde Schotten M, et al. Evidence for potentials and limitations of brain plasticity using an atlas of functional resectability of WHO grade II gliomas: towards a “minimal common brain”. Neuroimage. 2011;56:992–1000.PubMedCrossRefGoogle Scholar
  59. 59.
    Vallar G, Bolognini N. Behavioral facilitation following brain stimulation: implications for neurorehabilitation. Neuropsychol Rehabil. 2011;21:618–49.PubMedCrossRefGoogle Scholar
  60. 60.
    Miniussi C, Vallar G. Brain stimulation and behavioral cognitive rehabilitation: a new tool for ­neurorehabilitation. Neuropsychol Rehabil. 2011;21:553–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Weiduschat N, Thiel A, Rubi-Fessen I, et al. Effects of repetitive transcranial magnetic stimulation in aphasic stroke: a randomized controlled pilot study. Stroke. 2011;42:409–15.PubMedCrossRefGoogle Scholar
  62. 62.
    Diaconescu AO, Kramer E, Hermann C, et al. Distinct functional networks associated with improvements of affective symptoms and cognitive function and citalopram treatment in geriatric depression. Hum Brain Mapp. 2011;32:1677–91.PubMedCrossRefGoogle Scholar
  63. 63.
    Wegbreit E, Ellis JA, Nandam A, et al. Amygdala functional connectivity predicts pharmacotherapy outcome in pediatric bipolar disorder. Brain Connect. 2011;1:411–22.PubMedCrossRefGoogle Scholar
  64. 64.
    Floel A, Cohen LG. Recovery of function in humans: cortical stimulation and pharmacological treatments after stroke. Neurobiol Dis. 2010;37:243–51.PubMedCrossRefGoogle Scholar
  65. 65.
    Winblad B. Piracetam: a review of pharmacological properties and clinical uses. CNS Drug Rev. 2005;11: 169–82.PubMedCrossRefGoogle Scholar
  66. 66.
    Goveas JS, Xie C, Ward BD, et al. Recovery of hippocampal network connectivity correlates with cognitive improvement in mild Alzheimer’s disease treated with donepezil assessed by resting-state fMRI. J Magn Reson Imaging. 2011;4:764–73.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.National Institute for Health and Medical Research (INSERM), U1051, Team “Plasticity of the Central Nervous System, Human Stem Cells and Glial Tumors”, Institute for Neurosciences of MontpellierMontpellier University Medical CenterMontpellierFrance
  2. 2.Department of Neurosurgery, Gui de Chauliac HospitalMontpellier University Medical CenterMontpellierFrance
  3. 3.Department of Neurology, CHRU Montpellier, Gui de Chauliac HospitalMontpellier University Medical CenterMontpellierFrance

Personalised recommendations