Advertisement

Surgery for Diffuse Low-Grade Gliomas (DLGG) Functional Considerations

  • Hugues DuffauEmail author
Chapter

Abstract

After many decades of controversies, guidelines now recommend ­maximal surgical resection as the first therapeutic option in DLGG. This paradigmatic shift should lead neurosurgeons to switch toward an early and extensive removal of this chronic and diffuse tumoral disease of the brain. Yet, preservation of the quality of life (QoL) is also a priority in surgery for DLGG. Interestingly, because of the frequent location of DLGG within “eloquent” areas and due to their infiltrative feature, it was considered for a long time that the chances to perform an extensive glioma removal were low, whereas the risk to generate postoperative sequelae was high. To solve this dilemma, the brain surgeon should change his philosophy and his technique on the basis of a new concept, that is, to perform resection according to cortico-subcortical functional limits (with no margin) and not according to oncological boundaries. In other words, the neurosurgeon should see first the brain, and not the glioma, to adapt his surgical procedure to the individual cerebral anatomo-functional organization, which can be highly variable from patient to patient or even in the same patient over time due to brain reorganization induced by the slow growth of DLGG. The ultimate aim is to remove a part of the brain invaded by tumoral cells, on the condition nonetheless that it can be functionally compensated – thus, with no consequences on the QoL. In this setting, neurosurgeons need to take advantage of mapping methods to create individualized maps and management plans. These technical and conceptual advances, which consist in performing early (and possible repeated) resection(s) for DLGG, based on functional boundaries provided by pre-, intra-, and postoperative methods of mapping both at cortical and subcortical levels, in a hodotopical and plastic framework of cerebral processing, have allowed a dramatic improvement of the benefit-to-risk ratio of surgery. This chapter reviews how, in addition to functional neuroimaging, the method of intraoperative stimulation mapping, especially in awake patients, has enabled (1) an increase of the surgical indications for tumor located within eloquent areas classically considered as “inoperable,” (2) a significant optimization of the extent of resection, and (3) a preservation or even an improvement of the QoL. Therefore, stronger interactions between cognitive/behavioral neurosciences and oncological neurosurgery begin to solve the classical dilemma – survival versus brain functions – by giving the possibility to become more ambitious, namely, to increase both survival and QoL in DLGG patients. To this end, awake mapping should be more systematically considered, even in presumed “non-eloquent areas.”

Keywords

DLGG Surgery Multistage surgical approach Awake mapping Direct electrical stimulation Anatomo-functional connectivity Quality of life Functional neuroimaging 

References

  1. 1.
    Capelle L, Fontaine D, Mandonnet E, Taillandier L, Golmard JL, Bauchet L, et al. Spontaneous and therapeutic prognostic factors in adult hemispheric WHO grade II gliomas: a series of 1097 cases. J Neurosurg, (in press).Google Scholar
  2. 2.
    Duffau H, Lopes M, Arthuis F, Bitar A, Sichez JP, van Effenterre R, et al. Contribution of intraoperative electrical stimulations in surgery of low grade gliomas: a comparative study between two series without (1985–96) and with (1996–2003) functional mapping in the same institution. J Neurol Neurosurg Psychiatry. 2005;76:845–51.PubMedCrossRefGoogle Scholar
  3. 3.
    Smith JS, Chang EF, Lamborn KR, Chang SM, Prados MD, Cha S, et al. Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol. 2008;26:1338–45.PubMedCrossRefGoogle Scholar
  4. 4.
    Yordanova Y, Moritz-Gasser S, Duffau H. Awake ­surgery for WHO grade II gliomas within “noneloquent” areas in the left dominant hemisphere: toward a “supratotal” resection. J Neurosurg. 2011;115:232–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Soffietti R, Baumert B, Bello L, von Deimling A, Duffau H, Frenay M, et al. Guidelines on management of low grade gliomas: report of an EFNS-EANO task force. Eur J Neurol. 2010;17:1124–33.PubMedCrossRefGoogle Scholar
  6. 6.
    Duffau H. A new concept of diffuse (low-grade) glioma surgery. Adv Tech Stand Neurosurg. 2012;38:3–27.PubMedCrossRefGoogle Scholar
  7. 7.
    Pallud J, Fontaine D, Duffau H, Mandonnet E, Sanai N, Taillandier L, et al. Natural history of incidental World Health Organization grade II gliomas. Ann Neurol. 2010;68:727–33.PubMedCrossRefGoogle Scholar
  8. 8.
    Duffau H. The challenge to remove diffuse low grade gliomas while preserving brain functions. Acta Neurochir (Wien). 2012;154:569–74.CrossRefGoogle Scholar
  9. 9.
    Duffau H. Surgery of low-grade gliomas: towards a “functional neurooncology”. Curr Opin Oncol. 2009;21:543–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Duffau H, Capelle L. Preferential brain locations of low grade gliomas. Cancer. 2004;100:2622–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Parisot S, Duffau H, Chemouny S, Paragios N. Graph based spatial position mapping of low-grade gliomas. Med Image Comput Comput Assist Interv. 2011;14:508–15.PubMedGoogle Scholar
  12. 12.
    Vigneau M, Beaucousin V, Herve PY, Duffau H, Crivello F, Houdé O, et al. Meta-analyzing left ­hemisphere language areas: phonology, semantics, and sentence processing. Neuroimage. 2006;30:1414–32.PubMedCrossRefGoogle Scholar
  13. 13.
    Ojemman G, Ojemann J, Lettich E, Berger M. Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J Neurosurg. 1989;71:316–26.CrossRefGoogle Scholar
  14. 14.
    Desmurget M, Bonnetblanc F, Duffau H. Contrasting acute and slow growing lesions: a new door to brain plasticity. Brain. 2007;130:898–914.PubMedCrossRefGoogle Scholar
  15. 15.
    Duffau H. Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity. Lancet Neurol. 2005;4:476–86.PubMedCrossRefGoogle Scholar
  16. 16.
    Duffau H. Brain plasticity: from pathophysiological mechanisms to therapeutic applications. J Clin Neurosci. 2006;13:885–97.PubMedCrossRefGoogle Scholar
  17. 17.
    Duffau H. Brain plasticity and tumors. Adv Tech Stand Neurosurg. 2008;33:3–33.PubMedCrossRefGoogle Scholar
  18. 18.
    Pouratian N, Bookheimer SY. The reliability of neuroanatomy as a predictor of eloquence: a review. Neurosurg Focus. 2010;28(2):E3.PubMedCrossRefGoogle Scholar
  19. 19.
    Pallud J, Taillandier L, Capelle L, Fontaine D, Peyre M, Ducray F, et al. Quantitative morphological MRI follow-up of low-grade glioma: a plead for systematic measurement of growth rates. Neurosurgery. 2012;71(3):729–39.PubMedCrossRefGoogle Scholar
  20. 20.
    Duffau H. New concepts in surgery of WHO grade II gliomas: functional brain mapping, connectionism and plasticity. J Neurooncol. 2006;13:885–97.Google Scholar
  21. 21.
    Duffau H, Capelle L, Denvil D, Sichez N, Gatignol P, Lopes M, et al. Functional recovery and surgical resection of low grade gliomas in eloquent brain: hypothesis of brain compensation. J Neurol Neurosurg Psychiatry. 2003;74:901–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Teixidor P, Gatignol P, Leroy M, Masuet-Aumatell C, Capelle L, Duffau H. Assessment of verbal working memory before and after surgery for low-grade glioma. J Neurooncol. 2007;81:305–13.PubMedCrossRefGoogle Scholar
  23. 23.
    Blonski M, Taillandier L, Herbet G, Maldonado IL, Beauchesne P, Fabbro M, et al. Combination of neoadjuvant chemotherapy followed by surgical resection as new strategy for WHO grade II gliomas: a study of cognitive status and quality of life. J Neurooncol. 2012;106:353–66.PubMedCrossRefGoogle Scholar
  24. 24.
    Klein M, Duffau H, De Witt Hamer PC. Cognition and resective surgery for diffuse infiltrative glioma: an overview. J Neurooncol. 2012;108:309–18.PubMedCrossRefGoogle Scholar
  25. 25.
    Moritz-Gasser S, Herbet G, Maldonado IL, Duffau H. Lexical access speed is significantly correlated with the return to professional activities after awake surgery for low-grade gliomas. J Neurooncol. 2012;107:633–41.PubMedCrossRefGoogle Scholar
  26. 26.
    Duffau H. Awake surgery for nonlanguage mapping. Neurosurgery. 2010;66:523–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Mandonnet E, Delattre JY, Tanguy ML, Swanson KR, Carpentier AF, Duffau H, et al. Continuous growth of mean tumor diameter in a subset of grade II gliomas. Ann Neurol. 2003;53:524–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Mandonnet E, Capelle L, Duffau H. Extension of paralimbic low-grade gliomas: toward an anatomical classification based on white matter invasion patterns. J Neurooncol. 2006;78:179–85.PubMedCrossRefGoogle Scholar
  29. 29.
    Pallud J, Mandonnet E, Duffau H, Kujas M, Guillevin R, Galanaud D, et al. Prognostic value of initial magnetic resonance imaging growth rates for World Health Organization grade II gliomas. Ann Neurol. 2006;60:380–3.PubMedCrossRefGoogle Scholar
  30. 30.
    Pallud J, Varlet P, Devaux B, Geha S, Badoual M, Deroulers C, et al. Diffuse low-grade oligodendrogliomas extend beyond MRI-defined abnormalities. Neurology. 2010;74:1724–31.PubMedCrossRefGoogle Scholar
  31. 31.
    Tarapore PE, Tate MC, Findlay AM, Honma SM, Mizuiri D, Berger MS, et al. Preoperative multimodal motor mapping: a comparison of magnetoencephalography imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation. J Neurosurg. 2012;117(2):354–62.PubMedCrossRefGoogle Scholar
  32. 32.
    Young RJ, Brennan N, Fraser JF, Brennan C. Advanced imaging in brain tumor surgery. Neuroimaging Clin N Am. 2010;20:311–35.PubMedCrossRefGoogle Scholar
  33. 33.
    Berman J. Diffusion MR, tractography as a tool for surgical planning. Magn Reson Imaging Clin N Am. 2009;17:205–14.PubMedCrossRefGoogle Scholar
  34. 34.
    Picht T, Schulz J, Hanna M, Schmidt S, Suess O, Vajkoczy P. Assessment of the influence of navigated transcranial magnetic stimulation on surgical planning for tumors in or near the motor cortex. Neurosurgery. 2012;70:1248–58.PubMedCrossRefGoogle Scholar
  35. 35.
    Vassal M, Le Bars E, Moritz-Gasser S, Menjot N, Duffau H. Crossed aphasia elicited by intraoperative cortical and subcortical stimulation in awake patients. J Neurosurg. 2010;113:1251–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Duffau H, Leroy M, Gatignol P. Cortico-subcortical organization of language networks in the right hemisphere: an electrostimulation study in left-handers. Neuropsychologia. 2008;46:3197–209.PubMedCrossRefGoogle Scholar
  37. 37.
    Nimsky C. Intraoperative acquisition of fMRI and DTI. Neurosurg Clin N Am. 2011;22:269–77.PubMedCrossRefGoogle Scholar
  38. 38.
    Bürgel U, Mädler B, Honey CR, Thron A, Gilsbach J, Coenen VA. Fiber tracking with distinct software tools results in a clear diversity in anatomical fiber tract portrayal. Cen Eur Neurosurg. 2009;70:27–35.CrossRefGoogle Scholar
  39. 39.
    Bartos R, Jech R, Vymazal J, Petrovický P, Vachata P, Hejcl A, et al. Validity of primary motor area localization with fMRI versus electric cortical stimulation: a comparative study. Acta Neurochir (Wien). 2009;151:1071–80.CrossRefGoogle Scholar
  40. 40.
    Roux FE, Boulanouar K, Lotterie JA, Mejdoubi M, LeSage JP, Berry I. Language functional magnetic resonance imaging in preoperative assessment of language areas: correlation with direct cortical stimulation. Neurosurgery. 2003;52:1335–45.PubMedCrossRefGoogle Scholar
  41. 41.
    Giussani C, Roux FE, Ojemman J, Sganzerla EP, Pirillo D, Papagno C. Is preoperative functional magnetic resonance imaging reliable for language areas mapping in brain tumor surgery? Review of language functional magnetic resonance imaging and direct cortical stimulation correlation studies. Neurosurgery. 2010;66:113–20.PubMedCrossRefGoogle Scholar
  42. 42.
    Ulmer JL, Krouwer HG, Mueller WM, Ugurel MS, Kocak M, Mark LP. Pseudo-reorganization of language cortical function at fMR imaging: a consequence of tumor-induced neurovascular uncoupling. Am J Neuroradiol. 2003;24:213–7.PubMedGoogle Scholar
  43. 43.
    Leclercq D, Duffau H, Delmaire C, Capelle L, Gatignol P, Ducros M, Chiras J, Lehéricy S. Comparison of diffusion tensor imaging tractography of language tracts and intraoperative subcortical stimulations. J Neurosurg. 2010;112:503–11.PubMedCrossRefGoogle Scholar
  44. 44.
    Krainik A, Lehéricy S, Duffau H, Vlaicu M, Poupon F, Capelle L, et al. Role of the supplementary motor area in motor deficit following medial frontal lobe surgery. Neurology. 2001;57:871–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Krainik A, Lehéricy S, Duffau H, Capelle L, Chainay H, Cornu P, et al. Postoperative speech disorder after medial frontal surgery: role of the supplementary motor area. Neurology. 2003;60:587–94.PubMedCrossRefGoogle Scholar
  46. 46.
    Duffau H, Moritz-Gasser S, Gatignol P. Functional outcome after language mapping for insular World Health Organization grade II gliomas in the dominant hemisphere: experience with 24 patients. Neurosurg Focus. 2009;27:E7.PubMedCrossRefGoogle Scholar
  47. 47.
    Benzagmout M, Gatignol P, Duffau H. Resection of World Health Organization grade II gliomas involving Broca’s area: methodological and functional considerations. Neurosurgery. 2007;61:741–52.PubMedCrossRefGoogle Scholar
  48. 48.
    Sarubbo S, Le Bars E, Moritz-Gasser S, Duffau H. Complete recovery after surgical resection of left Wernicke’s area in awake patient: a brain stimulation and functional MRI study. Neurosurg Rev. 2012;35:287–92.PubMedCrossRefGoogle Scholar
  49. 49.
    Gil Robles S, Duffau H. Surgical management of World Health Organization grade II gliomas in eloquent areas: the necessity of preserving a margin around functional structures? Neurosurg Focus. 2010;28:E8.PubMedCrossRefGoogle Scholar
  50. 50.
    Duffau H, Gatignol P, Mandonnet E, Capelle L, Taillandier L. Contribution of intraoperative subcortical stimulation mapping of language pathways: a consecutive series of 115 patients operated on for a WHO grade II glioma in the left dominant hemisphere. J Neurosurg. 2008;109:461–71.PubMedCrossRefGoogle Scholar
  51. 51.
    Buchmann N, Gempt J, Stoffel M, Foerschler A, Meyer B, Ringel F. Utility of diffusion tensor-imaged (DTI) motor fiber tracking for the resection of intracranial tumors near the corticospinal tract. Acta Neurochir (Wien). 2011;153:68–74.CrossRefGoogle Scholar
  52. 52.
    Gil Robles S, Gatignol P, Lehéricy S, Duffau H. Long-term brain plasticity allowing multiple-stages surgical approach for WHO grade II gliomas in eloquent areas: a combined study using longitudinal functional MRI and intraoperative electrical stimulation. J Neurosurg. 2008;109:615–24.CrossRefGoogle Scholar
  53. 53.
    Willems PW, Taphoorn MJ, Burger H, Berkelbach van der Sprenkel JW, Tulleken CA. Effectiveness of neuronavigation in resecting solitary intracerebral contrast-enhancing tumors: a randomized controlled trial. J Neurosurg. 2006;104:360–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Szelényi A, Hattingen E, Weidauer S, Seifert V, Ziemann U. Intraoperative motor evoked potential alteration in intracranial tumor surgery and its relation to signal alteration in postoperative magnetic resonance imaging. Neurosurgery. 2010;67:302–13.PubMedCrossRefGoogle Scholar
  55. 55.
    Wiedemayer H, Sandalcioglu IE, Armbruster W, Regel J, Schaefer H, Stolkke D. False negative findings in intraoperative SEP monitoring: analysis of 658 consecutive neurosurgical cases and review of published reports. J Neurol Neurosurg Psychiatry. 2004;75:280–6.PubMedGoogle Scholar
  56. 56.
    Hayashi Y, Nakada M, Kinoshita M, Hamada JI. Functional reorganization in the patient with progressing glioma of pure primary motor cortex: a case report with special reference to the topographic central sulcus defined by SEP. World Neurosurg, (in press).Google Scholar
  57. 57.
    Lafargue G, Duffau H. Awareness of intending to act following parietal cortex resection. Neuropsychologia. 2008;46:2662–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Schucht P, Moritz-Gasser S, Herbet G, Raabe A, Duffau H. Subcortical electrostimulation to identify network subserving motor control. Hum Brain Mapp. 2012. doi: 10.1002/hbm.22122.
  59. 59.
    Sallard E, Duffau H, Bonnetblanc F. Ultra-fast ­recovery from right neglect after ‘awake surgery’ for slow-growing tumor invading the left parietal area. Neurocase. 2012;18:80–90.PubMedCrossRefGoogle Scholar
  60. 60.
    Sallard E, Barral J, Duffau H, Bonnetblanc F. Manual reaction times and brain dynamics after ‘awake surgery’ of slow-growing tumours invading the parietal area. Brain Inj. 2012;26(13–14):1750–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Duffau H, Capelle L, Denvil D, Sichez N, Gatignol P, Taillandier L, et al. Usefulness of intraoperative electrical subcortical mapping during surgery for low-grade gliomas located within eloquent brain regions: functional results in a consecutive series of 103 patients. J Neurosurg. 2003;98:764–78.PubMedCrossRefGoogle Scholar
  62. 62.
    Kral T, Kurthen M, Schramm J, Urbach H, Meyer B. Stimulation mapping via implanted grid electrodes prior to surgery for gliomas in highly eloquent cortex. Neurosurgery. 2006;58:ONS36–43.PubMedCrossRefGoogle Scholar
  63. 63.
    Matsumoto R, Nair DR, Ikeda A, Fumuro T, Lapresto E, Mikuni N, et al. Parieto-frontal network in humans studied by cortico-cortical evoked potential. Hum Brain Mapp. 2012;33(12):2856–72.PubMedCrossRefGoogle Scholar
  64. 64.
    Serletis D, Bernstein M. Prospective study of awake craniotomy used routinely and nonselectively for supratentorial tumors. J Neurosurg. 2007;107:1–6.PubMedCrossRefGoogle Scholar
  65. 65.
    Sanai N, Mirzadeh Z, Berger MS. Functional outcome after language mapping for glioma resection. N Engl J Med. 2008;358:18–27.PubMedCrossRefGoogle Scholar
  66. 66.
    Kim SS, McCutcheon IE, Suki D, Weinberg JS, Sawaya R, Lang FF, et al. Awake craniotomy for brain tumors near eloquent cortex: correlation of intraoperative cortical mapping with neurological outcomes in 309 consecutive patients. Neurosurgery. 2009;64:836–46.PubMedCrossRefGoogle Scholar
  67. 67.
    Szelényi A, Bello L, Duffau H, Fava E, Feigl GC, Galanda M, et al. Intraoperative electrical stimulation in awake craniotomy: methodological aspects of ­current practice. Neurosurg Focus. 2010;28(2):E7.PubMedCrossRefGoogle Scholar
  68. 68.
    Duffau H. Intraoperative cortico-subcortical stimulations in surgery of low-grade gliomas. Expert Rev Neurother. 2006;5:473–85.CrossRefGoogle Scholar
  69. 69.
    Duffau H. Contribution of cortical and subcortical electrostimulation in brain glioma surgery: methodological and functional considerations. Neurophysiol Clin. 2007;37:373–82.PubMedCrossRefGoogle Scholar
  70. 70.
    Sartorius CJ, Berger MS. Rapid termination of intraoperative stimulation-evoked seizures with application of cold Ringer’s lactate to the cortex. Technical note J Neurosurg. 1998;88:349–51.CrossRefGoogle Scholar
  71. 71.
    Mandonnet E, Winkler PA, Duffau H. Direct electrical stimulation as an input gate into brain functional networks: principles, advantages and limitations. Acta Neurochir (Wien). 2010;152:185–93.CrossRefGoogle Scholar
  72. 72.
    Duffau H, Capelle L, Denvil D, Gatignol P, Sichez N, Lopes M, et al. The role of dominant premotor cortex in language: a study using intraoperative functional mapping in awake patients. Neuroimage. 2003;20:1903–14.PubMedCrossRefGoogle Scholar
  73. 73.
    Duffau H. Towards an “active” cognitive assessment in glioma patients. J Neurosurg, (in press).Google Scholar
  74. 74.
    Duffau H, Velut S, Mitchell MC, Gatignol P, Capelle L. Intra-operative mapping of the subcortical visual pathways using direct electrical stimulations. Acta Neurochir (Wien). 2004;146:265–9.CrossRefGoogle Scholar
  75. 75.
    Mandonnet E, Gatignol P, Duffau H. Evidence for an occipito-temporal tract underlying visual recognition in picture naming. Clin Neurol Neurosurg. 2009;111:601–5.PubMedCrossRefGoogle Scholar
  76. 76.
    Gras-Combe G, Moritz-Gasser S, Herbet G, Duffau H. Intraoperative subcortical electrical mapping of optic radiations in awake surgery for glioma involving visual pathways. J Neurosurg. 2012;117(3):466–73.PubMedCrossRefGoogle Scholar
  77. 77.
    Coello AF, Duvaux S, de Benedictis A, Matsuda A, Duffau H. Involvement of the right inferior longitudinal fascicle in visual hemiagnosia: a brain stimulation mapping study. J Neurosurg 2013;118:202–5.Google Scholar
  78. 78.
    Spena G, Gatignol P, Capelle L, Duffau H. Superior longitudinal fasciculus subserves vestibular network in humans. Neuroreport. 2006;17:1403–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Thiebaut de Schotten M, Urbanski M, Duffau H, Volle E, Lévy R, Dubois B, et al. Direct evidence for a parietal-frontal pathway subserving spatial awareness in humans. Science. 2005;309:2226–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Roux FE, Dufor O, Lauwers-Cances V, Boukhatem L, Brauge D, Draper L, et al. Electrostimulation mapping of spatial neglect. Neurosurgery. 2011;69:1218–31.PubMedCrossRefGoogle Scholar
  81. 81.
    Duffau H, Gatignol P, Mandonnet E, Peruzzi P, Tzourio-Mazoyer N, Capelle L. New insights into the anatomo-functional connectivity of the semantic system: a study using cortico-subcortical stimulations. Brain. 2005;128:797–810.PubMedCrossRefGoogle Scholar
  82. 82.
    Gatignol P, Capelle L, Le Bihan R, Duffau H. Double dissociation between picture naming and comprehension: an electrostimulation study. Neuroreport. 2004;15:191–5.PubMedCrossRefGoogle Scholar
  83. 83.
    Vidorreta JG, Garcia R, Moritz-Gasser S, Duffau H. Double dissociation between syntactic gender and picture naming processing: a brain stimulation mapping study. Hum Brain Mapp. 2011;32:331–40.PubMedCrossRefGoogle Scholar
  84. 84.
    Moritz-Gasser S, Duffau H. Evidence of a large-scale network underlying language switching: a brain stimulation study. J Neurosurg. 2009;111:729–32.PubMedCrossRefGoogle Scholar
  85. 85.
    Ilmberger J, Ruge M, Kreth FW, Briegel J, Reulen HJ, Tonn JC. Intraoperative mapping of language ­functions: a longitudinal neurolinguistic analysis. J Neurosurg. 2008;109:583–92.PubMedCrossRefGoogle Scholar
  86. 86.
    Roux FE, Dufor O, Giussani C, Wamain Y, Draper L, Longcamp M, et al. The graphemic/motor frontal area Exner’s area revisited. Ann Neurol. 2009;66:537–45.PubMedCrossRefGoogle Scholar
  87. 87.
    Borius PY, Giussani C, Draper L, Roux FE. Sentence translation in proficient bilinguals: a direct electrostimulation brain mapping. Cortex. 2012;48:614–22.PubMedCrossRefGoogle Scholar
  88. 88.
    Duffau H, Denvil D, Lopes M, Gasparini F, Cohen L, Capelle L, et al. Intraoperative mapping of the cortical areas involved in multiplication and subtraction: an electrostimulation study in a patient with a left parietal glioma. J Neurol Neurosurg Psychiatry. 2002;73:733–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Plaza M, Gatignol P, Cohen H, Berger B, Duffau H. A discrete area within the left dorsolateral prefrontal cortex involved in visual-verbal incongruence judgment. Cereb Cortex. 2008;18:1253–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Milea D, Lobel E, Lehéricy S, Duffau H, Rivaud-Péchoux S, Berthoz A, et al. Intraoperative frontal eye field stimulation elicits ocular deviation and saccade suppression. Neuroreport. 2002;13:1359–64.PubMedCrossRefGoogle Scholar
  91. 91.
    Gil Robles S, Gatignol P, Capelle L, Mitchell MC, Duffau H. The role of dominant striatum in language: a study using intraoperative electrical stimulations. J Neurol Neurosurg Psychiatry. 2005;76:940–6.PubMedCrossRefGoogle Scholar
  92. 92.
    Roux FE, Boukhatem L, Draper L, Sacko O, Démonet JF. Cortical calculation localization using electrostimulation. J Neurosurg. 2009;110:1291–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Giussani C, Pirillo D, Roux FE. Mirror of the soul: a cortical stimulation study on recognition of facial emotions. J Neurosurg. 2010;112:520–7.PubMedCrossRefGoogle Scholar
  94. 94.
    Duffau H. Does post-lesional subcortical plasticity exist in the human brain? Neurosci Res. 2009;65:131–5.PubMedCrossRefGoogle Scholar
  95. 95.
    Ius T, Angelini E, de Schotten MT, Mandonnet E, Duffau H. Evidence for potentials and limitations of brain plasticity using an atlas of functional respectability of WHO grade II gliomas: towards a “minimal common brain”. Neuroimage. 2011;56:992–1000.PubMedCrossRefGoogle Scholar
  96. 96.
    Martino J, Vergani F, Robles SG, Duffau H. New insights into the anatomic dissection of the temporal stem with special emphasis on the inferior fronto-occipital fasciculus: implications in surgical approach to left mesiotemporal and temporoinsular structures. Neurosurgery. 2010;66:4–12.PubMedCrossRefGoogle Scholar
  97. 97.
    Martino J, De Witt Hamer PC, Vergani F, Brogna C, de Lucas EM, Vázquez-Barquero A, et al. Cortex-sparing fiber dissection: an improved method for the study of white matter anatomy in the human brain. J Anat. 2011;219:531–41.PubMedCrossRefGoogle Scholar
  98. 98.
    Martino J, Brogna C, Gil Robles S, Vergani F, Duffau H. Anatomic dissection of the inferior ­fronto-occipital fasciculus revisited in the lights of brain stimulation data. Cortex. 2010;46:691–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Martino J, De Witt Hamer PC, Berger MS, Lawton MT, Arnold CM, de Lucas EM, et al. Analysis of the subcomponents and cortical ­terminations of the perisylvian superior longitudinal ­fasciculus: a fiber dissection and DTI tractography study. Brain Struct Funct. 2013;218:105–21.Google Scholar
  100. 100.
    Sarubbo S, De Benedictis A, Maldonado IL, Basso G, Duffau H. Frontal terminations for the inferior fronto-occipital fascicle: anatomical dissection, DTI study and functional considerations on a multi-component bundle. Brain Struct Funct. 2013;218:21–37.Google Scholar
  101. 101.
    de Benedictis A, Sarubbo S, Duffau H. Subcortical surgical anatomy of the lateral frontal region: human white matter dissection and correlations with functional insights provided by intraoperative direct brain stimulation. J Neurosurg. 2012;117:1053–69.Google Scholar
  102. 102.
    Duffau H. A personal consecutive series of surgically treated 51 cases of insular WHO grade II glioma: advances and limitations. J Neurosurg. 2009;110:696–708.PubMedCrossRefGoogle Scholar
  103. 103.
    Maldonado IL, Moritz-Gasser S, de Champfleur NM, Bertram L, Moulinié G, Duffau H. Surgery for gliomas involving the left inferior parietal lobule: new insights into the functional anatomy provided by stimulation mapping in awake patients. J Neurosurg. 2011;115:770–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Duffau H, Capelle L, Sichez N, Denvil D, Bitar A, Sichez JP, et al. Intraoperative mapping of the subcortical language pathways using direct stimulations. An anatomo-functional study. Brain. 2002;125:199–214.PubMedCrossRefGoogle Scholar
  105. 105.
    Thiebaut de Schotten M, Dell’Acqua F, Valabregue R, Catani M. Monkey to human comparative anatomy of the frontal lobe association tracts. Cortex. 2012;48:82–96.PubMedCrossRefGoogle Scholar
  106. 106.
    Kinoshita M, Shinohara H, Hori O, Ozaki N, Ueda F, Nakada M, et al. Association fibers connecting the Broca center and the lateral superior frontal gyrus: a microsurgical and tractographic anatomy. J Neurosurg. 2012;116:323–30.PubMedCrossRefGoogle Scholar
  107. 107.
    Maldonado IL, Moritz-Gasser S, Duffau H. Does the left superior longitudinal fascicle subserve language semantics? A brain electrostimulation study. Brain Struct Funct. 2011;216:263–4.PubMedCrossRefGoogle Scholar
  108. 108.
    Duffau H, Gatignol P, Denvil D, Lopes M, Capelle L. The articulatory loop: study of the subcortical connectivity by electrostimulation. Neuroreport. 2003;14:2005–8.PubMedCrossRefGoogle Scholar
  109. 109.
    Catani M, Jones DK, Ffytche DH. Perisylvian language networks of the human brain. Ann Neurol. 2005;57:8–16.PubMedCrossRefGoogle Scholar
  110. 110.
    Viegas C, Moritz-Gasser S, Rigau V, Duffau H. Occipital WHO grade II gliomas: oncological, surgical and functional considerations. Acta Neurochir (Wien). 2011;153:1907–17.CrossRefGoogle Scholar
  111. 111.
    Mandonnet E, Nouet A, Gatignol P, Capelle L, Duffau H. Does the left inferior longitudinal fasciculus play a role in language? A brain stimulation study. Brain. 2007;130:623–9.PubMedCrossRefGoogle Scholar
  112. 112.
    Duffau H, Gatignol P, Moritz-Gasser S, Mandonnet E. Is the left uncinate fasciculus essential for language? A cerebral stimulation study. J Neurol. 2009;256:382–9.PubMedCrossRefGoogle Scholar
  113. 113.
    Papagno C, Miracapillo C, Casarotti A, Romero Lauro LJ, Castellano A, Falini A, et al. What is the role of the uncinate fasciculus? Surgical removal and proper name retrieval. Brain. 2011;134:405–14.PubMedCrossRefGoogle Scholar
  114. 114.
    Menjot de Champfleur N, Maldonado IL, Moritz-Gasser S, Le Bars E, Bonafé A, Duffau H. Middle Longitudinal Fasciculus delineation within language pathways: a diffusion tensor imaging study in human. Eur J Radiol. 2013;82:151–7.Google Scholar
  115. 115.
    De Witt Hamer P, Moritz-Gasser S, Gatignol P, Duffau H. Is the human left middle longitudinal fascicle essential for language? A brain electrostimulation study. Human Brain Mapp. 2011;32:962–73.CrossRefGoogle Scholar
  116. 116.
    Duffau H. The “frontal syndrome” revisited: lessons from electrostimulation mapping studies. Cortex. 2012;48:120–31.PubMedCrossRefGoogle Scholar
  117. 117.
    Duffau H. The anatomo-functional connectivity of language revisited: new insights provided by electrostimulation and tractography. Neuropsychologia. 2008;4:927–34.CrossRefGoogle Scholar
  118. 118.
    Duffau H, Khalil I, Gatignol P, Denvil D, Capelle L. Surgical removal of corpus callosum infiltrated by low-grade glioma: functional outcome and oncological considerations. J Neurosurg. 2004;100:431–7.PubMedCrossRefGoogle Scholar
  119. 119.
    de Benedictis A, Duffau H. Brain hodotopy: from esoteric concept to practical surgical applications. Neurosurgery. 2011;68:1709–23.PubMedCrossRefGoogle Scholar
  120. 120.
    Carrabba G, Mandonnet E, Fava E, Capelle L, Gaini SM, Duffau H, et al. Transient inhibition of motor function induced by the Cavitron ultrasonic surgical aspirator during brain mapping. Neuro­surgery. 2008;63:E178–9.PubMedCrossRefGoogle Scholar
  121. 121.
    Lubrano V, Draper L, Roux FE. What makes surgical tumor resection feasible in Broca’s area? Insights into intraoperative brain mapping. Neurosurgery. 2010;66:868–75.PubMedCrossRefGoogle Scholar
  122. 122.
    Duffau H. Acute functional reorganisation of the human motor cortex during resection of central lesions: a study using intraoperative brain mapping. J Neurol Neurosurg Psychiatry. 2001;70:506–13.PubMedCrossRefGoogle Scholar
  123. 123.
    de Witt Hamer PC, Gil Robles S, Zwinderman A, Duffau H, Berger MS. Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J Clin Oncol. 2012;30:2559–65.PubMedCrossRefGoogle Scholar
  124. 124.
    Sacko O, Lauwers-Cances V, Brauge D, Sesay M, Brenner A, Roux FE. Awake craniotomy vs surgery under general anesthesia for resection of supratentorial lesions. Neurosurgery. 2011;68:1192–8.PubMedGoogle Scholar
  125. 125.
    Duffau H, Capelle L, Lopes M, Bitar A, Sichez JP, van Effenterre R. Medically intractable epilepsy from insular low-grade gliomas: improvement after extended lesionectomy. Acta Neurochir (Wien). 2002;144:563–73.CrossRefGoogle Scholar
  126. 126.
    Ghareeb F, Duffau H. Intractable epilepsy in paralimbic World Health Organization grade II gliomas: should the hippocampus be resected when not invaded by the tumor? J Neurosurg. 2012;116:1226–34.PubMedCrossRefGoogle Scholar
  127. 127.
    Krainik A, Duffau H, Capelle L, Cornu P, Boch AL, Mangin JF, et al. Role of the healthy hemisphere in recovery after resection of the supplementary motor area. Neurology. 2004;62:1323–32.PubMedCrossRefGoogle Scholar
  128. 128.
    Duffau H, Denvil D, Capelle L. Long term reshaping of language, sensory and motor maps following glioma resection: a new parameter to integrate in the surgical strategy. J Neurol Neurosurg Psychiatry. 2002;72:511–6.PubMedGoogle Scholar
  129. 129.
    Duffau H, editor. Brain mapping: from neural basis of cognition to surgical applications. New York: Springer Wien; 2011.Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Department of Neurosurgery, Gui de Chauliac HospitalMontpellier University Medical CenterMontpellier Cedex 5France
  2. 2.National Institute for Health and Medical Research (INSERM), U1051 Laboratory, Team “Brain Plasticity, Stem Cells and Glial Tumors”, Institute for Neurosciences of MontpellierMontpellier University Medical CenterMontpellierFrance

Personalised recommendations