Surgery for Diffuse Low-Grade Gliomas (DLGG) Oncological Considerations

  • Hugues DuffauEmail author


For a long time, surgery for DLGG was a matter of debate. The main problem explaining discrepancies in the classical literature is related to the fact that, in the vast majority of series, extent of resection (EOR) was not objectively assessed on postoperative MRI. It was based on the sole subjectivity of the surgeons or on a single computed tomography scan, with no volume measurement of the residue. In the modern series which used a systematic postoperative T2-/FLAIR-weighted MRI, all authors have demonstrated that a more aggressive resection predicted significant improvement in overall survival (OS) compared with a simple debulking. In addition, it was shown that an extended removal of a margin beyond these MR imaging-defined abnormalities, that is, a “supra-total” resection, significantly increased OS by delaying malignant transformation. This means that biopsy in DLGG should be considered only in very diffuse lesions, such as gliomatosis, or when a subtotal resection is not a priori possible. Collectively, despite the lack of phase III study, these data strongly argue in favor of achieving a maximal resection of DLGG as the first therapeutic option. Thus, surgeons should change their mind in order to operate the brain involved by a chronic tumoral disease – and no more by operating a tumor mass within the brain. The goal is not to content with a single “tumorectomy” (i.e., to remove only the “top of the iceberg” visible on imaging) but to perform the most extensive resection of the brain invaded by DLGG on the condition that this part of the brain is not crucial for cerebral functions. In other words, neurosurgeons should take the habit to perform early and maximal resection according to functional (and not purely oncological or anatomical) boundaries in awake patients. This perspective seems to represent the best way to build a modern and personalized “functional surgical neurooncology.”


DLGG Surgery Supratotal resection Overall survival Malignant transformation Extent of resection Functional mapping 


  1. 1.
    Mandonnet E, Delattre JY, Tanguy ML, Swanson KR, Carpentier AF, Duffau H, et al. Continuous growth of mean tumor diameter in a subset of grade II gliomas. Ann Neurol. 2003;53:524–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Mandonnet E, Pallud J, Clatz O, Taillandier L, Konukoglu E, Duffau H, et al. Computational modeling of the WHO grade II glioma dynamics: principles and applications to management paradigm. Neurosurg Rev. 2008;31:263–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Pallud J, Taillandier L, Capelle L, Fontaine D, Peyre M, Ducray F, et al. Quantitative morphological MRI follow-up of low-grade glioma: a plead for systematic measurement of growth rates. Neurosurgery. 2012;71(3):729–39.PubMedCrossRefGoogle Scholar
  4. 4.
    Pallud J, Fontaine D, Duffau H, Mandonnet E, Sanai N, Taillandier L, et al. Natural history of incidental World Health Organization grade II gliomas. Ann Neurol. 2010;68:727–33.PubMedCrossRefGoogle Scholar
  5. 5.
    Mandonnet E, Pallud J, Fontaine D, Taillandier L, Bauchet L, Peruzzi P, et al. Inter- and intrapatients comparison of WHO grade II glioma kinetics before and after surgical resection. Neurosurg Rev. 2010;33:91–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Pallud J, Mandonnet E, Duffau H, Kujas M, Guillevin R, Galanaud D, et al. Prognostic value of initial magnetic resonance imaging growth rates for World Health Organization grade II gliomas. Ann Neurol. 2006;60:380–3.PubMedCrossRefGoogle Scholar
  7. 7.
    Giese A, Wesphal M. Glioma invasion in the central nervous system. Neurosurgery. 1996;39:235–50.PubMedCrossRefGoogle Scholar
  8. 8.
    Mandonnet E, Capelle L, Duffau H. Extension of paralimbic low-grade gliomas: toward an anatomical classification based on white matter invasion patterns. J Neurooncol. 2006;78:179–85.PubMedCrossRefGoogle Scholar
  9. 9.
    Stadlbauer A, Pölking E, Prante O, Nimsky C, Buchfelder M, Kuwert T, et al. Detection of tumour invasion into the pyramidal tract in glioma patients with sensorimotor deficits by correlation of (18)F-Fluoroethyl-L: -tyrosine PET and magnetic resonance diffusion tensor imaging. Acta Neurochir (Wien). 2009;151:1061–9.CrossRefGoogle Scholar
  10. 10.
    Duffau H. Does post-lesional subcortical plasticity exist in the human brain? Neurosci Res. 2009;65:131–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Ius T, Angelini E, de Schotten MT, Mandonnet E, Duffau H. Evidence for potentials and limitations of brain plasticity using an atlas of functional respectability of WHO grade II gliomas: towards a “minimal common brain”. Neuroimage. 2011;56:992–1000.PubMedCrossRefGoogle Scholar
  12. 12.
    Bosma I, Reijneveld JC, Klein M, Douw L, van Dijk BW, Heimans JJ, et al. Disturbed functional brain networks and cognitive function in low-grade glioma patients: a graph theoretical analysis of resting-state MEG. Nonlinear Biomed Phys. 2009;3:9.PubMedCrossRefGoogle Scholar
  13. 13.
    Duffau H. The “frontal syndrome” revisited: lessons from electrostimulation mapping studies. Cortex. 2011;48:120–31.PubMedCrossRefGoogle Scholar
  14. 14.
    Aaronson NK, Taphoorn MJ, Heimans JJ, Postma TJ, Gundy CM, Beute GN, et al. Compromised health-related quality of life in patients with low-grade glioma. J Clin Oncol. 2011;29:4430–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Teixidor P, Gatignol P, Leroy M, Masuet-Aumatell C, Capelle L, Duffau H. Assessment of verbal working memory before and after surgery for low-grade glioma. J Neurooncol. 2007;81:305–13.PubMedCrossRefGoogle Scholar
  16. 16.
    Klein M, Duffau H, De Witt Hamer PC. Cognition and resective surgery for diffuse infiltrative glioma: an overview. J Neurooncol. 2012;108:309–18.PubMedCrossRefGoogle Scholar
  17. 17.
    Mandonnet E, Jbabdi S, Taillandier L, Galanaud D, Benali H, Capelle L, et al. Preoperative estimation of residual volume for WHO grade II glioma resected with intraoperative functional mapping. Neuro Oncol. 2007;9:63–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Karim AB, Maat B, Hatlevoll R, Menten J, Rutten EH, Thomas DG, et al. A randomized trial on dose–response in radiation therapy on low-grade cerebral glioma. European Organization for Research and Treatment of Cancer (EORTC) Study 22844. Inj J Radiat Oncol Biol Phys. 1996;36:549–56.CrossRefGoogle Scholar
  19. 19.
    Karim AB, Afra D, Cornu P, Bleehan N, Schraub S, De Witte O, et al. Randomized trial on the efficacy of radiotherapy for cerebral low-grade glioma in the adult: European Organization for Research and Treatment of Cancer (EORTC) Study 22845. Int J Radiat Oncol Biol Phys. 2002;52:316–24.PubMedCrossRefGoogle Scholar
  20. 20.
    Rees J, Watt H, Jäger HR, Benton C, Tozer D, Tofts P, et al. Volumes and growth rates of untreated adults low-grade gliomas indicate risk of early malignant transformation. Eur J Radiol. 2009;72:54–64.PubMedCrossRefGoogle Scholar
  21. 21.
    Brown PD, Buckner JC, O’Fallon JR, Iturria NL, O’Neill BP, Brown CA, et al. Importance of baseline mini-mental state examination as a prognostic factor for patients with low-grade glioma. Int J Radiat Oncol Biol Phys. 2004;59:117–25.PubMedCrossRefGoogle Scholar
  22. 22.
    Chang EF, Smith JS, Chang SM, Lamborn KR, Prados MD, Butowski N, et al. Preoperative prognostic classification system for hemispheric low-grade gliomas in adults. J Neurosurg. 2008;109:817–24.PubMedCrossRefGoogle Scholar
  23. 23.
    Daniels TB, Brown PD, Felten SJ, Wu W, Buckner JC, Arusell RM, et al. Validation of EORTC prognostic factors for adults with low-grade glioma: a report using intergroup 86-72-51. Int J Radiat Oncol Biol Phys. 2011;81:218–24.PubMedCrossRefGoogle Scholar
  24. 24.
    Hattingen E, Raab P, Franz K, Lanfermann H, Setzer M, Gerlach R, et al. Prognostic value of choline and creatine in WHO grade II gliomas. Neuroradiology. 2008;50:759–67.PubMedCrossRefGoogle Scholar
  25. 25.
    Kim YH, Nobusawa S, Mittelbronn M, Paulus W, Brokinkel B, Keyvani K, et al. Molecular classification of low-grade diffuse gliomas. Am J Pathol. 2010;177:2708–14.PubMedCrossRefGoogle Scholar
  26. 26.
    Pignatti F, van den Bent M, Curran D, Debruyne S, Sylvester R, Therasse P, et al. Prognostic factors for survival in adult patients with cerebral low-grade glioma. J Clin Oncol. 2002;20:2076–84.PubMedCrossRefGoogle Scholar
  27. 27.
    Schomas DA, Lack NN, Rao RD, Meyer FB, Shaw EG, O’Neill BP, et al. Intracranial low-grade gliomas in adults: 30-year experience with long-term follow-up at Mayo Clinic. Neuro Oncol. 2009;11:437–45.PubMedCrossRefGoogle Scholar
  28. 28.
    Keles GE, Lamborn KR, Berger MS. Low-grade hemispheric gliomas in adults: a critical review of extent of resection as a factor influencing outcome. J Neurosurg. 2001;95:735–45.PubMedCrossRefGoogle Scholar
  29. 29.
    Sanai N, Berger MS. Glioma extent of resection and its impact on patient outcome. Neurosurgery. 2008;62:753–66.PubMedCrossRefGoogle Scholar
  30. 30.
    Sanai N, Chang S, Berger MS. Low-grade gliomas in adults. J Neurosurg. 2011;115:948–65.PubMedCrossRefGoogle Scholar
  31. 31.
    Sanai N, Berger MS. Operative techniques for gliomas and the value of extent of resection. Neurotherapeutics. 2009;6:478–86.PubMedCrossRefGoogle Scholar
  32. 32.
    Chang SM, Nelson S, Vandenberg S, Cha S, Prados M, Butowski N, et al. Integration of preoperative anatomic and metabolic physiologic imaging of newly diagnosed glioma. J Neurooncol. 2009;92:401–15.PubMedCrossRefGoogle Scholar
  33. 33.
    Duffau H. Surgery of low-grade gliomas: towards a “functional neurooncology”. Curr Opin Oncol. 2009;21:543–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Smith JS, Chang EF, Lamborn KR, Chang SM, Prados MD, Cha S, et al. Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol. 2008;26:1338–45.PubMedCrossRefGoogle Scholar
  35. 35.
    Claus EB, Horlacher A, Hsu L, Schwartz RB, Dello-Iacono D, Talos F. Survival rates in patients with low-grade glioma after intraoperative magnetic resonance image guidance. Cancer. 2005;103:1227–33.PubMedCrossRefGoogle Scholar
  36. 36.
    McGirt MJ, Chaichana KL, Attenello FJ, Weingart JD, Than K, Burger PC, et al. Extent of surgical resection is independently associated with survival in patients with hemispheric infiltrating low-grade gliomas. Neurosurgery. 2008;63:700–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Ahmadi R, Dictus C, Hartmann C, Zürn O, Edler L, Hartmann M, et al. Long-term outcome and survival of surgically treated supratentorial low-grade glioma in adult patients. Acta Neurochir. 2009;151:1359–65.PubMedCrossRefGoogle Scholar
  38. 38.
    Yeh SA, Ho JT, Lui CC, Huang YJ, Hsiung CY, Huang EY. Treatment outcomes and prognostic factors in patients with supratentorial low-grade gliomas. Br J Radiol. 2005;78:230–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Duffau H, Lopes M, Arthuis F, Bitar A, Sichez JP, van Effenterre R, et al. Contribution of intraoperative electrical stimulations in surgery of low grade gliomas: a comparative study between two series without (1985–96) and with (1996–2003) functional mapping in the same institution. J Neurol Neurosurg Psychiatry. 2005;76:845–51.PubMedCrossRefGoogle Scholar
  40. 40.
    Capelle L, Fontaine D, Mandonnet E, Taillandier L, Golmard JL, Bauchet L, et al. Spontaneous and therapeutic prognostic factors in adult hemispheric WHO grade II gliomas: a series of 1097 cases. J Neurosurg, (in press).Google Scholar
  41. 41.
    Berger MS, Deliganis AV, Dobbins J, Keles GE. The effect of extent of resection on recurrence in patients with low grade cerebral hemisphere gliomas. Cancer. 1994;74:1784–91.PubMedCrossRefGoogle Scholar
  42. 42.
    Sanai N, Polley MY, Berger MS. Insular glioma resection: assessment of patient morbidity, survival and tumor progression. J Neurosurg. 2010;112:1–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Simon M, Neuloh G, von Lehe M, Meyer B, Schramm J. Insular gliomas: the case for surgical management. J Neurosurg. 2009;110:685–95.PubMedCrossRefGoogle Scholar
  44. 44.
    Chaichana KL, McGirt MJ, Laterra J, Olivi J, Quinones-Hinojosa A. Recurrence and malignant degeneration after resection of adult hemispheric low-grade gliomas. J Neurosurg. 2010;112:10–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Pallud J, Varlet P, Devaux B, Geha S, Badoual M, Deroulers C, et al. Diffuse low-grade oligodendrogliomas extend beyond MRI-defined abnormalities. Neurology. 2010;74:1724–31.PubMedCrossRefGoogle Scholar
  46. 46.
    Yordanova Y, Moritz-Gasser S, Duffau H. Awake surgery for WHO grade II gliomas within “noneloquent” areas in the left dominant hemisphere: toward a “supratotal” resection. J Neurosurg. 2011;115:232–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Ganslandt O, Stadlbauer A, Fahlbusch R, Kamada K, Buslei R, Blumcke I, et al. Proton Magnetic Resonance Spectroscopic imaging integrated into image-guided surgery: correlation to standard magnetic resonance imaging and tumor cell density. Neurosurgery. 2005;56:291–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Mandonnet E. Biomathematical modeling of low-grade glioma. Bull Acad Natl Med. 2011;195:23–34.PubMedGoogle Scholar
  49. 49.
    Schmidt MH, Berger MS, Lamborn KR, Aldape K, McDermott MW, Prados MD, et al. Repeated operations for infiltrative low-grade gliomas without intervening therapy. J Neurosurg. 2003;98:1165–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Martino J, Taillandier L, Moritz-Gasser S, Gatignol P, Duffau H. Re-operation is a safe and effective therapeutic strategy in recurrent WHO grade II gliomas within eloquent areas. Acta Neurochir (Wien). 2009;151:427–36.CrossRefGoogle Scholar
  51. 51.
    Duffau H. Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity. Lancet Neurol. 2005;4:476–86.PubMedCrossRefGoogle Scholar
  52. 52.
    Gil Robles S, Gatignol P, Lehéricy S, Duffau H. Long-term brain plasticity allowing multiple-stages surgical approach for WHO grade II gliomas in eloquent areas: a combined study using longitudinal functional MRI and intraoperative electrical stimulation. J Neurosurg. 2008;109:615–24.CrossRefGoogle Scholar
  53. 53.
    Muragaki Y, Chernov M, Maruyama T, Ochiai T, Taira T, Kubo O, et al. Low-grade glioma on stereotactic biopsy: how often is the diagnosis accurate? Minim Invasive Neurosurg. 2008;51:275–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Fontaine D, Dormont D, Hasboun D, Clemenceau S, Valery C, Oppenheim C, et al. Magnetic resonance-guided stereotactic biopsies: results in 100 consecutive cases. Acta Neurochir (Wien). 2000;142:249–55.CrossRefGoogle Scholar
  55. 55.
    Chernov MF, Muragaki Y, Ochiai T, Taira T, Ono Y, Usukura M, et al. Spectroscopy-supported frame-based image-guided stereotactic biopsy of parenchymal brain lesions: comparative evaluation of diagnostic yield and diagnostic accuracy. Clin Neurol Neurosurg. 2009;111:527–35.PubMedCrossRefGoogle Scholar
  56. 56.
    Kunz M, Thon N, Eigenbrod S, Hartmann C, Egensperger R, Herms J, et al. Hot spots in dynamic (18)FET-PET delineate malignant tumor parts within suspected WHO grade II gliomas. Neuro Oncol. 2011;13:307–16.PubMedCrossRefGoogle Scholar
  57. 57.
    Duffau H. The challenge to remove diffuse low grade gliomas while preserving brain functions. Acta Neurochir (Wien). 2012;154:569–74.CrossRefGoogle Scholar
  58. 58.
    Duffau H. A new concept of diffuse (low-grade) glioma surgery. Adv Tech Stand Neurosurg. 2012;38:3–27.PubMedCrossRefGoogle Scholar
  59. 59.
    Gil Robles S, Duffau H. Surgical management of World Health Organization grade II gliomas in eloquent areas: the necessity of preserving a margin around functional structures? Neurosurg Focus. 2010;28:E8.PubMedCrossRefGoogle Scholar
  60. 60.
    Jbabdi S, Mandonnet E, Duffau H, Capelle L, Swanson KR, Pélégrini-Issac M, et al. Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging. Magn Reson Med. 2005;54:616–24.PubMedCrossRefGoogle Scholar
  61. 61.
    Sanai N, Snyder LA, Honea NJ, Coons SW, Eschbacher JM, Smith KA, et al. Intraoperative confocal microscopy in the visualization of 5-aminolevulinic acid fluorescence in low-grade gliomas. J Neurosurg. 2011;115:740–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Feigl GC, Ritz R, Moraes M, Klein J, Ramina K, Gharabaghi A, et al. Resection of malignant brain tumors in eloquent cortical areas: a new multimodal approach combining 5-aminolevulinic acid and intraoperative monitoring. J Neurosurg. 2010;113:352–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Pillai JJ. The evolution of clinical functional imaging during the 2 past decades and its current impact on neurosurgical planning. AJNR Am J Neuroradiol. 2010;31:219–25.PubMedCrossRefGoogle Scholar
  64. 64.
    Bürgel U, Mädler B, Honey CR, Thron A, Gilsbach J, Coenen VA. Fiber tracking with distinct software tools results in a clear diversity in anatomical fiber tract portrayal. Cen Eur Neurosurg. 2009;70:27–35.CrossRefGoogle Scholar
  65. 65.
    Giussani C, Roux FE, Ojemman J, Sganzerla EP, Pirillo D, Papagno C. Is preoperative functional magnetic resonance imaging reliable for language areas mapping in brain tumor surgery? Review of language functional magnetic resonance imaging and direct cortical stimulation correlation studies. Neurosurgery. 2010;66:113–20.PubMedCrossRefGoogle Scholar
  66. 66.
    Leclercq D, Duffau H, Delmaire C, Capelle L, Gatignol P, Ducors M, et al. Comparison of diffusion tensor imaging tractography of language tracts and intraoperative subcortical stimulations. J Neurosurg. 2010;112:503–11.PubMedCrossRefGoogle Scholar
  67. 67.
    Krishnan R, Raabe A, Hattingten E, Szelényi A, Yahya H, Hermann E, et al. Functional magnetic resonance imaging-integrated neuronavigation: correlation between lesion-to-motor cortex distance and outcome. Neurosurgery. 2004;55:904–15.PubMedCrossRefGoogle Scholar
  68. 68.
    Duffau H, Gatignol P, Mandonnet E, Capelle L, Taillandier L. Contribution of intraoperative subcortical stimulation mapping of language pathways: a consecutive series of 115 patients operated on for a WHO grade II glioma in the left dominant hemisphere. J Neurosurg. 2008;109:461–71.PubMedCrossRefGoogle Scholar
  69. 69.
    Vigneau M, Beaucousin V, Herve PY, Duffau H, Crivello F, Houdé O, et al. Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. Neuroimage. 2006;30:1414–32.PubMedCrossRefGoogle Scholar
  70. 70.
    Skirboll SS, Ojemann GA, Berger MS, Lettich E, Winn HR. Functional cortex and subcortical white matter located within gliomas. Neurosurgery. 1996;38:678–84.PubMedCrossRefGoogle Scholar
  71. 71.
    Sanai N, Mirzadeh Z, Berger MS. Functional outcome after language mapping for glioma resection. N Engl J Med. 2008;358:18–27.PubMedCrossRefGoogle Scholar
  72. 72.
    Kim SS, McCutcheon IE, Suki D, Weinberg JS, Sawaya R, Lang FF, et al. Awake craniotomy for brain tumors near eloquent cortex: correlation of intraoperative cortical mapping with neurological outcomes in 309 consecutive patients. Neurosurgery. 2009;64:836–46.PubMedCrossRefGoogle Scholar
  73. 73.
    Taylor MD, Berstein M. Awake craniotomy with brain mapping as the routine surgical approach to treating patients with supratentorial intraaxial tumors: a prospective trial of 200 cases. J Neurosurg. 1999;90:35–41.PubMedCrossRefGoogle Scholar
  74. 74.
    Duffau H. Intraoperative cortico-subcortical stimulations in surgery of low-grade gliomas. Expert Rev Neurother. 2005;5:473–85.PubMedCrossRefGoogle Scholar
  75. 75.
    de Witt Hamer PC, Gil Robles S, Zwinderman A, Duffau H, Berger MS. Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J Clin Oncol. 2012;30:2559–65.PubMedCrossRefGoogle Scholar
  76. 76.
    de Benedictis A, Moritz-Gasser S, Duffau H. Awake mapping optimizes the extent of resection for low-grade gliomas in eloquent areas. Neurosurgery. 2010;66:1074–84.PubMedCrossRefGoogle Scholar
  77. 77.
    Chang EF, Clark A, Smith JS, Polley MY, Chang SM, Barbaro NM, et al. Functional mapping-guided resection of low-grade gliomas in eloquent areas of the brain: improvement of long term survival. J Neurosurg. 2011;114:566–73.PubMedCrossRefGoogle Scholar
  78. 78.
    Duffau H. A personal consecutive series of surgically treated 51 cases of insular WHO grade II glioma: advances and limitations. J Neurosurg. 2009;110:696–708.PubMedCrossRefGoogle Scholar
  79. 79.
    Duffau H, Moritz-Gasser S, Gatignol P. Functional outcome after language mapping for insular World Health Organization grade II gliomas in the dominant hemisphere: experience with 24 patients. Neurosurg Focus. 2009;27:E7.PubMedCrossRefGoogle Scholar
  80. 80.
    Yasargil MG, von Ammon K, Cavazos E, Doczi T, Reeves JD, Roth P. Tumours of the limbic and paralimbic systems. Acta Neurochir (Wien). 1992;118:40–52.CrossRefGoogle Scholar
  81. 81.
    Carrabba G, Mandonnet E, Fava E, Capelle L, Gaini SM, Duffau H, et al. Transient inhibition of motor function induced by the Cavitron ultrasonic surgical aspirator during brain mapping. Neurosurgery. 2008;63:E178–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Soffietti R, Baumert B, Bello L, von Deimling A, Duffau H, Frenay M, et al. Guidelines on management of low grade gliomas: report of an EFNS-EANO task force. Eur J Neurol. 2010;17:1124–33.PubMedCrossRefGoogle Scholar
  83. 83.
    Blonski M, Taillandier L, Herbet G, Maldonado IL, Beauchesne P, Fabbro M, et al. Combination of neoadjuvant chemotherapy followed by surgical resection as new strategy for WHO grade II gliomas: a study of cognitive status and quality of life. J Neurooncol. 2012;106:353–66.PubMedCrossRefGoogle Scholar
  84. 84.
    Mandonnet E. Mathematical modeling of glioma on MRI. Rev Neurol (Paris). 2011;167:715–20.CrossRefGoogle Scholar
  85. 85.
    Duffau H, Capelle L. Preferential brain locations of low grade gliomas. Cancer. 2004;100:2622–6.PubMedCrossRefGoogle Scholar
  86. 86.
    Parisot S, Duffau H, Chemouny S, Paragios N. Graph based spatial position mapping of low-grade gliomas. Med Image Comput Comput Assist Interv. 2011;14:508–15.PubMedGoogle Scholar
  87. 87.
    Duffau H, editor. Brain mapping: from neural basis of cognition to surgical applications. Wien\New York: Springer; 2011.Google Scholar
  88. 88.
    Duffau H. Awake surgery for incidental WHO grade II gliomas involving eloquent areas. Acta Neurochir (Wien). 2012;154:575–84.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Department of Neurosurgery, Gui de Chauliac HospitalMontpellier University Medical CenterMontpellier Cedex 5France
  2. 2.National Institute for Health and Medical Research (INSERM), U1051 Laboratory, Team “Brain Plasticity, Stem Cells and Glial Tumors”, Institute for Neurosciences of MontpellierMontpellier University Medical CenterMontpellierFrance

Personalised recommendations