Skip to main content

Superconducting Direct Drive Wind Turbine Generators: Advantages and Challenges

  • Chapter
  • First Online:
Wind Energy Conversion Systems

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

This chapter contains a discussion of the advantages and challenges of introducing superconducting generators in future wind turbines. A special focus is given to the European offshore wind turbine marked, because this is the most mature and because the European Union (EU) has decided on a 20% renewable energy share of the electricity by 2020. Thus there are already scenarios of how the offshore wind power capacity is expected to develop in EU over the next two decades and this is used as the framework for a discussion of the advancements needed to make the superconducting drive trains feasible. The text is organized in a section first outlining the EU offshore plans; a section on the different drive trains; a section on the materials used to produce and shape the magnetic field in the generators and finally a section on the superconducting, vacuum, cryostat and cooling challenges of the superconducting direct drive technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. EWEA (2010) Wind statistics. EWEA, Brussels

    Google Scholar 

  2. Zervos A, Kjaer C (2009) Pure power—wind energy targets for 2020 and 2030. European Wind Energy Association, Brussel

    Google Scholar 

  3. Abrahamsen AB et al (2010) Superconducting wind turbine generators. Supercond Sci Technol 23(034019):1–8

    Google Scholar 

  4. Gardner P et al. (2009) Wind energy—the facts. ISBN 9781844077106. Brussel: Earthscan

    Google Scholar 

  5. Poore R, Lettermaier T (2003) Alternative design study report: WindPACT advanced wind turbine drive train designs study. National Renewable Energy Laboratory. NREL/SR-500-33196

    Google Scholar 

  6. Enercon. www.enercon.com. [Online]

  7. Wobben A (2006) Majesties in the wind. Windblatt. February

    Google Scholar 

  8. Blundell S (2003) Magnetism in condensed matter. New York: Oxford university press. ISBN 0 19 850591 5

    Google Scholar 

  9. Sagawa M et al (1984) New material for permanent magnets on a base of Nd and Fe (Invited). J Appl Phys 55(6):2083–2087

    Article  Google Scholar 

  10. Goldwind www.goldwindglobal.com. [Online]

  11. Siemens www.energy.siemens.com. [Online]

  12. GE. www.gepower.com. [Online]

  13. Switch. www.theswitch.com. [Online] The Switch

  14. Polinder H et al (2006) Comparison of direct drive amd geared generator concepts for wind turbines. IEEE trans energy convers 21(3):725

    Article  Google Scholar 

  15. Shrestha G, Polinder H, Ferreira JA (2009) Scaling laws for direct drive generators in wind turbines. IEMDC proceedings. p 797

    Google Scholar 

  16. Bang D et al. (2008) Comparative design of radial and transverse flux PM generators for direct-drive wind turbines. International conference on electrical machines, proceedings, vol. Paper ID 1325, p 1

    Google Scholar 

  17. Polinder H et al (2007) 10 MW wind turbine direct-drive generator design with pitch or active speed stall control. IEMDC proceedings, p 1390

    Google Scholar 

  18. Eskildsen MR et al (1998) Intertwined symmetry of the magnetic modulation and the flux-line lattice in the superconducting state of TmNi2B2C. Nature 393:242

    Article  Google Scholar 

  19. Maeda H, Togano K (ed) (1996) Bismuth-based high temperature superconductors. Marcel dekker, ISBN 0-8247-9690-X

    Google Scholar 

  20. Foltyn SR et al (2007) Materials science challenges for high-temperature superconducting wire. Nature Mater 6:631

    Article  Google Scholar 

  21. Li X et al (2009) The development of second generation hts wire at american superconductor. IEEE Trans Appl Supercond 19(3):3231

    Article  Google Scholar 

  22. Hazelton DW, Selvamanickam V (2009) SuperPower’s YBCO coated high-temperature superconducting (HTS) wire and magnet applications. Proceedings of the IEEE, vol 97, 11, p 1831

    Google Scholar 

  23. Vlad VR et al (2009) Growth of chemical solution deposited TFAYBCO/MOD(Ce, Zr)O2)/ABADYSZ/SS coated conductors. IEEE Trans Appl Supercond 19(3):3212

    Article  Google Scholar 

  24. www.amsc.com. [Online] American Superconductor

  25. www.superwind.dk. [Online]

  26. Abrahamsen AB et al. (2011) Feasibility study of 5 MW superconducting wind turbine generator. Physica C. vol. DOI: 10.1016/j.physc.2011.05.217

  27. www.superpower.com. [Online]

  28. Selvamanickam V et al (2010) Enhanced and uniform in-field performance in long (Gd, Y)–Ba–Cu–O tapes with zirconium doping fabricated by metal–organic chemical vapor deposition. Supercond Sci Technol 23(014014):1–6

    Google Scholar 

  29. ter Brake HJM, Wiegerinck GFM (2002) Low-power cryocooler survey. Cryogenics 42:705

    Article  Google Scholar 

  30. SHICryogenics www.SHIcryogenics.com. [Online]

  31. White GK, Meeson PJ (2002) Experiental techniques in low-temperature physics. 4. Oxford University press, ISBN 0 19 851427 1

    Google Scholar 

  32. RUAG. www.ruag.com/space/ch. [Online]

  33. Kalsi SS et al (2004) Development status of rotating machines employing superconducting field windings. Proc IEEE 92:1688

    Article  Google Scholar 

  34. Barnes PN, Sumption MD, Rhoads GL (2005) Review of high power density superconducting generators: present state and prospects for incorporating YBCO windings. Cryogenics 45:670–686

    Article  Google Scholar 

  35. Nick W et al (2010) Development and construction of an HTS rotor for ship propulsion application. J Phys Conf Ser 234(032040):1–9

    Google Scholar 

  36. Snitchler G (2010) Progress on high temperature superconductor propulsion motors and direct drive wind generators. International Power Electronics Conference—ECCE Asia -, IPEC. 2010, pp 5–10

    Google Scholar 

  37. Lewis C, Muller J (2007) A direct drive wind turbine HTS generator. IEEE Power Engineering Society General Meeting. pp 1–8

    Google Scholar 

  38. AML Advanced Magnet Lab. www.magnetlab.com. [Online]

  39. Selvamanickam V et al (2009) High performance 2G wires: from R&D to pilot-scale manufacturing. IEEE Trans Appl Supercond 19(3):3225

    Article  Google Scholar 

  40. Radebaugh R (2009) Cryocoolers: the state of the art and recent developments. J Phys: Condens Matter 21(164219):1–9

    Google Scholar 

  41. EU (2010) Critical raw materials for the EU (Report). Brussels: European Commision, June

    Google Scholar 

Download references

Acknowledgment

The funding of the Superwind project was provided by the Technical University of Denmark from the globalization funds and the support of Henrik Bindslev is acknowledged. Also the valuable discussions with colleges and co-workers are acknowledged. This work is dedicated to the memory of Steen Tronæs Frandsen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asger Bech Abrahamsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Abrahamsen, A.B., Jensen, B.B. (2012). Superconducting Direct Drive Wind Turbine Generators: Advantages and Challenges. In: Muyeen, S. (eds) Wind Energy Conversion Systems. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-2201-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2201-2_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2200-5

  • Online ISBN: 978-1-4471-2201-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics