Skip to main content

Power-Flow Control and Stability Enhancement of Four Parallel-Operated Offshore Wind Farms Using a Line-Commutated HVDC Link

  • Chapter
  • First Online:
Book cover Wind Energy Conversion Systems

Part of the book series: Green Energy and Technology ((GREEN))

  • 4185 Accesses

Abstract

This chapter presents an effective control scheme using a line-commutated high-voltage direct-current (HVDC) link with a designed rectifier-current regulator (RCR) to simultaneously perform both power-fluctuation mitigation and damping improvement of four parallel-operated 80 MW offshore wind farms delivering generated power to a large utility grid. The proposed RCR of the HVDC link is designed by using modal control theory to contribute adequate damping to the studied four offshore wind farms under various wind speeds. A systematic analysis using a frequency-domain approach based on eigenvalue analysis and a time-domain scheme based on nonlinear model simulations is performed to demonstrate the effectiveness of the proposed control scheme. It can be concluded from the simulation results that the proposed HVDC link combined with the designed RCR can not only render adequate damping characteristics to the studied offshore wind farms under various wind speeds but also effectively mitigate power fluctuations of the offshore wind farms under wind-speed disturbance conditions (Wang et al., IEEE Trans Power Delivery 25(2):1190–1202, 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang L, Wang K-H, Lee W-J, Chen Z (2010) Power-flow control and stability enhancement of four parallel-operated offshore wind farms using a line-commutated HVDC link. IEEE Trans Power Delivery 25(2):1190–1202

    Article  Google Scholar 

  2. Narendra KG, Khorasani K, Sood VK, Pate RV (1998) Intelligent current controller for an HVDC transmission link. IEEE Trans Power Syst 13:1076–1083

    Article  Google Scholar 

  3. Jovcic D, Pahalawaththa N, Zavahir M (1999) Novel current controller design for elimination of dominant oscillatory mode on an HVDC line. IEEE Trans Power Delivery 14:543–548

    Article  Google Scholar 

  4. Jovcic D, Pahalawaththa N, Zavahir M (1999) Stability analysis of HVDC control loops. IEE Proc Gener Transm Distrib 146: 143–148

    Article  Google Scholar 

  5. Bunch R, Kosterev D (2000) Design and implementation of AC voltage dependent current order limiter at pacific HVDC intertie. IEEE Trans Power Delivery 15:293–299

    Article  Google Scholar 

  6. Kirby NM, Luckett MJ, Xu L (2001) HVDC transmission for large offshore wind farms. AC-DC Power Trans 485:162–168

    Google Scholar 

  7. Chan KH, Parle JA, Johnson N, Acha E (2001) Real-time implementation of a HVDC-VSC application in a scaled-down wind energy conversion system (WECS). AC-DC Power Trans 485:169–174

    Google Scholar 

  8. Gomes S, Martins N, Jonsson T, Menzies D, Ljungqvist R (2002) Modeling capacitor commutated converters in power system stability studies. IEEE Trans Power Syst 17:371–377

    Article  Google Scholar 

  9. Lu W, Ooi BT (2003) Optimal acquisition and aggregation of offshore wind power by multiterminal voltage-source HVDC. IEEE Trans Power Delivery 18:201–206

    Article  Google Scholar 

  10. Osauskas C, Wood A (2003) Small-signal dynamic modeling of HVDC systems. IEEE Trans Power Delivery 18:220–225

    Article  Google Scholar 

  11. Padiyar KR, Prabhu N (2004) Modelling control design and analysis of VSC based HVDC transmission systems. In proceedings of the IEEE 2004 international conference on power system technology, vol 1. pp 774–779

    Google Scholar 

  12. Yang X, Chen C (2004) HVDC dynamic modelling for small signal analysis. IEE Proc Gener Transm Distrib 151: 740–746

    Article  Google Scholar 

  13. Yin M, Li G, Zhou M, Liu Y (2005) Analysis and control of wind farm incorporated VSC-HVDC in unbalanced conditions. In: Proceedings of the 2005 IEEE/PES transaction and distribution conference, pp 1–6

    Google Scholar 

  14. Reidy A, Watson R (2005) Comparison of VSC based HVDC and HVAC interconnections to a large offshore wind farm. In: Proceedings IEEE power engineering society general meeting, vol 1. pp 1–8

    Google Scholar 

  15. Fernandopulle N, Alden RTH (2005) Integration of HVDC control dynamics into transientenergy functions. Can J Eelectr Comput Eng 30

    Google Scholar 

  16. Xiang D, Ran L, Bumby JR, Tavner PJ, Yang S (2006) Coordinated control of an HVDC link and doubly fed induction generators in a large offshore wind farm. IEEE Trans Power Delivery 21:463–470

    Article  Google Scholar 

  17. Koutiva XI, Vrionis TD, Vovos NA, Giannakopoulos GB (2006) Optimal integration of an offshore wind farm to a weak AC grid. IEEE Trans Power Delivery 21:987–994

    Article  Google Scholar 

  18. Jovcic D (2006) Interconnecting offshore wind farms using multiterminal VSC-based HVDC. In: Proceedings of the IEEE power engineering society, pp 1–7

    Google Scholar 

  19. Jovcic D, Milanovic JV (2006) Offshore wind farm based on variable frequency mini-grids with multiterminal DC interconnection. AC and DC power transactions, pp 215–219

    Google Scholar 

  20. Bresesti P, Kling WL, Hendriks RL, Vailati R (2007) HVDC connection of offshore wind farms to the transmission system. IEEE Trans Energy Convers 22:37–43

    Article  Google Scholar 

  21. Bozhko SV, Giménez RB, Li R, Clare JC, Asher GM (2007) Control of offshore DFIG-based wind farm grid with line-commutated HVDC connection. IEEE Trans Energy Convers 22:71–78

    Article  Google Scholar 

  22. Bozhko S, Asher G, Li R, Clare J, Yao L (2008) Large offshore DFIG-based wind farm with line-commutated HVDC connection to the main grid: engineering studies. IEEE Trans Energy Convers 23:119–127

    Article  Google Scholar 

  23. Li R, Bozhko S, Asher G (2008) Frequency control design for offshore wind farm grid with LCC-HVDC link connection. IEEE Trans Power Electron 23:1085–1092

    Article  Google Scholar 

  24. Du C, Agneholm E, Olsson G (2008) Use of VSC-HVDC for industrial systems having onsite generation with frequency control. IEEE Trans Power Delivery 23:2233–2240

    Article  Google Scholar 

  25. Du C, Agneholm E, Olsson G (2008) Comparison of different frequency controllers for a VSC-HVDC supplied system. IEEE Trans Power Delivery 23:2224–2232

    Article  Google Scholar 

  26. Murray NJ, Arrillaga J, Liu YH, Watson NR (2008) Flexible reactive power control in multigroup current-sourced HVDC interconnections. IEEE Trans Power Delivery 23:2160–2167

    Article  Google Scholar 

  27. Jaén A, Acha E, Gómez Expósito A (2008) Voltage source converter modeling for power system state estimation: STATCOM and VSC-HVDC. IEEE Trans Power Syst 23:1552–1559

    Article  Google Scholar 

  28. Anderson PM, Bose A (1983) Stability simulation of wind turbine system. IEEE Trans Power Apparatus Syst 102:3791–3795

    Article  Google Scholar 

  29. Heier S, Waddington R (1998) Grid integration of wind energy conversion systems. Wiley, New York

    Google Scholar 

  30. CIGRE (2000) Modeling new forms of generation and storage. TF.01.10, Fifth draft

    Google Scholar 

  31. Krause PC (1987) Analysis of electric machinery. McGraw-Hill, New York

    Google Scholar 

  32. Anderson PM, Fouad AA (1977) Power system control and stability. The Iowa University Press, AMES,IA

    Google Scholar 

  33. Kundur P (1994) Power system stability and control. McGraw-Hill, New York

    Google Scholar 

  34. Kimbark EW (1971) Direct current transmission. Wiley, New York

    Google Scholar 

  35. Peterson HA, Krause PC (1966) A direct- and quadrature-axis representation of a parallel AC and DC power system. IEEE Trans Power Apparatus Syst 86:210–224

    Article  Google Scholar 

  36. Rahim AHMA, El-Amin IM (1986) Stabilization of a high voltage AC/DC power system I, Evaluation of control strategies. IEEE Trans Power Syst 1:128–136

    Google Scholar 

  37. Hsu Y-Y, Wang L (1988) Damping of a parallel ac-dc power system using PID power system stabilizers and rectifier current regulators. IEEE Trans Energy Convers 3:540–549

    Article  Google Scholar 

  38. Hsu Y-Y, Wang L (1989) Modal control design of an HV DC system for the damping of subsynchronous oscillations. IEE proceedings, part C, vol 136. pp 76–86

    Google Scholar 

  39. Wang L (1993) A comparative study of damping schemes on damping generator oscillations. IEEE Trans Power Syst 8:613–619

    Article  Google Scholar 

  40. Wang L, Mau S-J, Chuko C-C (1993) Suppression of common torsional mode interactions using shunt reactor controllers. IEEE Trans Energy Convers 8:539–545

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Council of Taiwan under Grant NSC 96-2221-E-006-313-MY3, Grant NSC 97-2918-I-006-010, Grant NSC 99-3113-P-006-007, and Grant NSC 100-3113-E-006-014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wang .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 System Parameters

Reference [1]

$$ V_{\text{b}} = 161\, {\text{kV}},S_{\text{b}} = 80\, {\text{MW }}\left( {\text{One of four offshore wind farms}} \right), \, \omega_{\text{b}} = 2\pi f_{\text{b}} ,f_{\text{b}} = 50 {\text{Hz}} $$
  1. (a)

    Single 2 MW wind induction generator (IG) (per-unit) \( \begin{aligned}& V_{\text{b}} = 6 90 {\kern 1pt} {\text{V}},\,S_{\text{b}} = 2 {\text{MW}}, \, \omega_{\text{b}} = 2\pi f, f_{\text{b}} = 50 {\text{Hz}} \, r_{\text{s}} = 0.00 4 8 8, \\X_{\text{ss}} & = 0.0 9 2 4 1,{\kern 1pt} {\kern 1pt} \,r_{\text{r}} = 0.00 5 4 9, X_{\text{rr}} = 0.0 9 9 5 5,X_{\text{m}} = 3. 9 5 2 7 9,H_{\text{G}} = 3. 5 {\text{s}} \\ \end{aligned} \)

  2. (b)

    Excitation capacitor bank and AC transmission line (per-unit) \( X_{\text{C}} = 0. 3 7 5,R_{\text{T}} = 0.0 1,X_{\text{T}} = 0.0 4,R_{\text{L}} = 0.0 2,X_{\text{L}} = 0.0 8 \)

  3. (c)

    Line-commutated HVDC link (per-unit) \( \begin{aligned} R_{\text{DC}} = 0.0 5, X_{\text{DC}} = 0. 2,C_{\text{DC}} = 0. 6,C_{\text{I}} = 0. 3,C_{\text{R}} = 0. 6, \\ T_{\text{a1}} = 0.0 5 {\text{s}},K_{\text{a1}} & = 0. 1,T_{\text{R}} = 0. 1 {\text{s}},K_{\text{R}} = 1.0,T_{\text{I}} = 0. 1 {\text{s}},K_{\text{I}} = 1.0, I_{\text{Cmax}} = 0. 1,I_{\text{Cmin}} = - 0.1, \\ \, \alpha_{\text{Rmax}} = 3 5^\circ , \, \alpha_{\text{Rmin}} = 1 5^\circ , \, \gamma_{\text{Imax}} = 4 5^\circ , \, \gamma_{\text{Imin}} = 2 5^\circ \\ \end{aligned} \)

  4. (d)

    Wind-turbine characteristics and coefficients

(Fig. 16.11, Table 16.6).

Fig. 16.11
figure 11

Characteristics of the employed wind turbine model for simulations (©2010 IEEE. Reprinted from IEEE Trans. Power Delivery, vol. 25, no. 2, April 2010) (a) C P versus ? (b)T m versus ?r

Table 16.6 Coefficients c 1?c 9 employed in wind-turbine simulations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Wang, L., Wang, KH., Lee, WJ., Chen, Z. (2012). Power-Flow Control and Stability Enhancement of Four Parallel-Operated Offshore Wind Farms Using a Line-Commutated HVDC Link. In: Muyeen, S. (eds) Wind Energy Conversion Systems. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-2201-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2201-2_16

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2200-5

  • Online ISBN: 978-1-4471-2201-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics