Skip to main content

Models of Set Theory with Atoms

  • Chapter
Combinatorial Set Theory

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 2685 Accesses

Abstract

In this chapter, we shall construct various models of Set Theory in which the Axiom of Choice fails. In particular, we shall construct a model in which C(ℵ0,2) fails, and another one in which a cardinal \(\mathfrak {m}\) exists such that \(\mathfrak {m}^{2} < [\mathfrak {m}]^{2}\). These somewhat strange models are constructed in a similar way to models of ZF (see the cumulative hierarchy introduced in Chapter 3). However, instead of starting with the empty set (in order to build the cumulative hierarchy) we start with a set of atoms and define a certain group \(G\)of permutations of these atoms. Roughly speaking, a set x is in the model if x is “stable” under certain subgroups \(H \subseteq G\) (i.e., for all permutations \(\pi \in H\), πx=x). In this way we can make sure that some particular sets (e.g., choice functions for a given family in the model) do not belong to the model. Unfortunately, since we have to introduce atoms to construct these models, we do not get models of ZF; however, using the Jech–Sochor Embedding Theorem 17.2, we can embed arbitrarily large fragments of these models into models of ZF, which is sufficient for our purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ulrich Felgner, John K. Truss: The independence of the prime ideal theorem from the order-extension principle. J. Symb. Log. 64, 199–215 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adolf Fraenkel: Der Begriff “definit” und die Unabhängigkeit des Auswahlaxioms. Sitz.ber. Preuss. Akad. Wiss. Berl. Phys. - Math. Kl. 21, 253–257 (1922) (see [24] for a translation into English)

    Google Scholar 

  3. Adolf Fraenkel: Über die Ordnungsfähigkeit beliebiger Mengen. Sitz.ber. Preuss. Akad. Wiss. Berl. Phys. - Math. Kl. 29, 90–91 (1928)

    Google Scholar 

  4. Adolf Fraenkel: Gelöste und ungelöste Probleme im Umkreis des Auswahlprinzips. Atti del congresso internationale dei matematici, Bologna, 3–10 Settembre 1928, Vol. II, pp. 255–259. Bologna (1930)

    Google Scholar 

  5. Adolf Fraenkel: Sur l’axiome du choix. Enseign. Math. 34, 32–51 (1935)

    Google Scholar 

  6. Adolf Fraenkel: Über eine abgeschwächte Fassung des Auswahlaxioms. J. Symb. Log. 2, 1–25 (1937)

    Article  MATH  Google Scholar 

  7. Lorenz Halbeisen: Vergleiche Zwischen Unendlichen Kardinalzahlen in Einer Mengenlehre Ohne Auswahlaxiom. Diplomarbeit, University of Zürich (Switzerland) (1990)

    Google Scholar 

  8. Lorenz Halbeisen, Saharon Shelah: Consequences of arithmetic for set theory. J. Symb. Log. 59, 30–40 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lorenz Halbeisen, Saharon Shelah: Relations between some cardinals in the absence of the axiom of choice. Bull. Symb. Log. 7, 237–261 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. James D. Halpern: The independence of the axiom of choice from the Boolean prime ideal theorem. Fundam. Math. 55, 57–66 (1964)

    MATH  Google Scholar 

  11. James D. Halpern: On a question of Tarski and a maximal theorem of Kurepa. Pac. J. Math. 41, 111–121 (1972)

    Article  MATH  Google Scholar 

  12. James D. Halpern, Azriel Lévy: The Boolean prime ideal theorem does not imply the Axiom of Choice. In: Axiomatic Set Theory, Dana S. Scott (ed.). Proceedings of Symposia in Pure Mathematics, vol. XIII, Part I, pp. 83–134. Am. Math. Soc., Providence (1971)

    Chapter  Google Scholar 

  13. Thomas Jech: The Axiom of Choice. Studies in Logic and the Foundations of Mathematics, vol. 75. North-Holland, Amsterdam (1973)

    MATH  Google Scholar 

  14. Hans Läuchli: Auswahlaxiom in der Algebra. Comment. Math. Helv. 37, 1–18 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hans Läuchli: The independence of the ordering principle from a restricted axiom of choice. Fundam. Math. 54, 31–43 (1964)

    MATH  Google Scholar 

  16. Azriel Lévy: Axioms of multiple choice. Fundam. Math. 50, 475–483 (1961)

    Google Scholar 

  17. Azriel Lévy: The Fraenkel–Mostowski method for independence proofs in set theory. In: The Theory of Models, Proceedings of the 1963 International Symposium at Berkeley, J.W. Addison, L. Henkin, A. Tarski (eds.). Studies in Logic and the Foundation of Mathematics, pp. 221–228. North-Holland, Amsterdam (1965)

    Google Scholar 

  18. Adolf Lindenbaum, Andrzej Mostowski: Über die Unabhängigkeit des Auswahlaxioms und einiger seiner Folgerungen. C. R. Séances Soc. Sci. et des Lettres de Varsovie, Cl. III 31, 27–32 (1938)

    Google Scholar 

  19. Elliott Mendelson: The independence of a weak axiom of choice. J. Symb. Log. 21, 350–366 (1956)

    Article  MathSciNet  Google Scholar 

  20. Andrzej Mostowski: Über den Begriff einer endlichen Menge. C. R. Séances Soc. Sci. et des Lettres de Varsovie, Cl. III 31, 13–20 (1938)

    Google Scholar 

  21. Andrzej Mostowski: Über die Unabhängigkeit des Wohlordnungssatzes vom Ordnungsprinzip. Fundam. Math. 32, 201–252 (1939)

    Google Scholar 

  22. Andrzej Mostowski: Axiom of choice for finite sets. Fundam. Math. 33, 137–168 (1945)

    MathSciNet  MATH  Google Scholar 

  23. Ernst Specker: Zur Axiomatik der Mengenlehre (Fundierungs- und Auswahlaxiom). Z. Math. Log. Grundl. Math. 3, 173–210 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jean van Heijenoort: From Frege to Gödel. A Source Book in Mathematical Logic, 1879–1931. Source Books in the History of Science. Harvard University Press, Cambridge (1967)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenz J. Halbeisen .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Halbeisen, L.J. (2012). Models of Set Theory with Atoms. In: Combinatorial Set Theory. Springer Monographs in Mathematics. Springer, London. https://doi.org/10.1007/978-1-4471-2173-2_7

Download citation

Publish with us

Policies and ethics