High-Level Dimensional Metrology Process Planning

  • Yaoyao (Fiona) Zhao
  • Robert Brown
  • Thomas R. Kramer
  • Xun Xu
Chapter

Abstract

Dimensional metrology systems consist of a number of software and hardware systems.  Section 2.3 introduced the idea that a typical dimensional metrology system can be divided into four major elements: product definition, measurement process planning, measurement process execution, and analysis and reporting of quality data.

Keywords

Titanium Europe Milling Production Line Mist 

References

  1. 1.
    EIMaraghy HA, EIMaraghy WH (1994) Computer-aided inspection planning (CAIP). In: Shah JJ, Mäntylä M, Nau DS (eds) Advances in feature based manufacturing. Elsevier, Amsterdam, pp 85–89Google Scholar
  2. 2.
    Wong FSY, Chuah KB, Venuvinod PK (2005) Automated extraction of dimensional inspection features from part computer-aided design models. Int J Prod Res 43(12):2377–2396CrossRefGoogle Scholar
  3. 3.
    Li Y, Gu P (2004) Free-form surface inspection techniques state of the art review. Comput Aided Des 36(13):1395–1417CrossRefGoogle Scholar
  4. 4.
    ElMaraghy HA, Gu PH, Bollinger JG (1987) Expert system for inspection planning. CIRP Ann Manuf Technol 36(1):85–89CrossRefGoogle Scholar
  5. 5.
    Helmy HA (1991) Feature recognition and CAD-directed inspection using solid geometric representation. Lehigh University, BethlehemGoogle Scholar
  6. 6.
    ANSI (2004) Dimensional measuring interface standard, DMIS 5.0 standard, Part 1, ANSI/CAM-I 105.0-2004, Part 1Google Scholar
  7. 7.
    Joshi S, Chang TC (1988) Graph-based heuristics for recognition of machined features from a 3D solid model. Comput Aided Des 20(2):58–66MATHCrossRefGoogle Scholar
  8. 8.
    Hopp TH, Hocken RJ (1984) CAD-directed inspection. CIRP Ann Manuf Technol 33(1):357–361CrossRefGoogle Scholar
  9. 9.
    IBM (1989) Valisys—for quality in the makingGoogle Scholar
  10. 10.
    Audimess (1990) VW-GEDAS: Graphic-interactive programming system of CNC-coordinate measuring machinesGoogle Scholar
  11. 11.
    Medland AJ, Singh R, Sittas E, Mullineux G (1990) Intelligent communication between CAD and manufacturing activities. In: Proceedings of the 28th MATADOR conferenceGoogle Scholar
  12. 12.
    Medland AJ (1992) The computer-based design process, 2nd edn. Chapman & Hall, New YorkGoogle Scholar
  13. 13.
    Medland AJ, Mullineux G (1992) Strategies for automatic path planning of coordinate measuring machines. In: 24th CIRP international seminar on manufacturing systemsGoogle Scholar
  14. 14.
    Merat FL et al (1991) Automated inspection planning within the rapid design system. In: IEEE international conference on systems engineeringGoogle Scholar
  15. 15.
    Yau HT, Menq CH (1991) Path planning for automated dimensional inspection using coordinate measuring machines. In: Proceedings—IEEE international conference on robotics and automation, pp 1934–1939Google Scholar
  16. 16.
    Yau HT, Menq CH (1992) Automated dimensional inspection environment for manufactured parts using coordinate measuring machines. Int J Prod Res 30(7):1517–1536CrossRefGoogle Scholar
  17. 17.
    Menq CH, Yau HT, Lai GY (1992) Automated precision measurement of surface profile in CAD-directed inspection. IEEE Trans Robot Autom 8(2):268–278CrossRefGoogle Scholar
  18. 18.
    Tannock JDT, Lee H, Williams JHS (1993) Intelligent inspection planning and computer aided inspection. Proc IME B J Eng Manuf 207(B2):99–104CrossRefGoogle Scholar
  19. 19.
    Brown CW, Gyorog DA (1990) Generative inspection process planner for integrated production, In: American society of mechanical engineers, Production engineering division (Publication) PED, pp 151–162Google Scholar
  20. 20.
    Duffie N et al (1984) CAD Directed Inspection and Error Analysis Using Surface Patch Databases. CIRP Ann Manuf Technol 33(1):347–350CrossRefGoogle Scholar
  21. 21.
    Menq CH, Yau H-T, Wong C-L (1992) Intelligent planning environment for automated dimensional inspection using coordinate measuring machines. J Eng Ind 114(2):222–230Google Scholar
  22. 22.
    Cho MW, Kim K (1995) New inspection planning strategy for sculptured surfaces using coordinate measuring machine. Int J Prod Res 33(2):427–444MATHCrossRefGoogle Scholar
  23. 23.
    Corrigall MJ, Bell R, (1989) An inspection plan and code generation for coordinate measuring machines. In: Proceedings of 9th international conference of automated inspection and product control, pp 145–154Google Scholar
  24. 24.
    Corrigall MJ (1990) Inspection plan and code generation for coordinate measuring machines in a product modeling environment. Loughborough University of Technology, LoughboroughGoogle Scholar
  25. 25.
    Sira (1992) Design to inspection project, Sira LtdGoogle Scholar
  26. 26.
    Bogue R (2008) Car manufacturer uses novel laser scanner to reduce time to production. Assembl Autom 28(2):113–114CrossRefGoogle Scholar
  27. 27.
    Vezzetti E (2007) Reverse engineering: a selective sampling acquisition approach. Int J Adv Manuf Technol 33(5–6):521–529CrossRefGoogle Scholar
  28. 28.
    Minoni U, Cavalli F (2008) Surface quality control device for on-line applications. Measurement: J Int Meas Confed 41(7):774–782Google Scholar
  29. 29.
    Aguilar JJ et al (2004) Accuracy analysis of laser scanning probes used in coordinate measurement: simulation and experiments. In: VDI Berichte, pp 739–744, 797Google Scholar
  30. 30.
    Zhang SG et al (2000) Feature-based inspection process planning system for co-ordinate measuring machine (CMM). J Mater Process Technol 107(1–3):111–118CrossRefGoogle Scholar
  31. 31.
    Vafaeesefat A, Elmaraghy HA (2000) Automated accessibility analysis and measurement clustering for CMMs. Int J Prod Res 38(10):2215–2231CrossRefGoogle Scholar
  32. 32.
    Limaiem A, Elmaraghy HA (1999) CATIP: a computer-aided tactile inspection planning system. Int J Prod Res 37(2):447–465MATHCrossRefGoogle Scholar
  33. 33.
    Hwang CY, Tsai CY, Chang CA (2004) Efficient inspection planning for coordinate measuring machines. Int J Adv Manuf Technol 23(9–10):732–742CrossRefGoogle Scholar
  34. 34.
    Elkott DF, ElMaraghy HA, ElMaraghy WH (2002) Automatic sampling for CMM inspection planning of free-form surfaces. Int J Prod Res 40(11):2653–2676MATHCrossRefGoogle Scholar
  35. 35.
    Menq CH et al (1990) Statistical evaluation of form tolerances using discrete measurement data. American society of mechanical engineers, Production engineering division (Publication) PEDGoogle Scholar
  36. 36.
    Dowling MM et al (1997) Statistical issues in geometric feature inspection using coordinate measuring machines. Technometrics 39(1):3–17MATHCrossRefGoogle Scholar
  37. 37.
    Hwang I, Lee H, Ha S (2002) Hybrid neuro-fuzzy approach to the generation of measuring points for knowledge-based inspection planning. Int J Prod Res 40(11):2507–2520MATHCrossRefGoogle Scholar
  38. 38.
    Lee H, Cho MW, Yoon GS, Choi JH (2004) A computer-aided inspection planning system for on-machine measurement—part I: global inspection planning. KSME Int J 18(8):1349–1357Google Scholar
  39. 39.
    Cho MW et al (2004) A computer-aided inspection planning system for on-machine measurement—part II: local inspection planning. KSME Int J 18(8):1358–1367Google Scholar
  40. 40.
    Woo T, Liang R (1993) Optimal sampling for coordinate measurement: its definition and algorithm. Quality through engineering design, pp 333–346Google Scholar
  41. 41.
    Zhang YF et al (1996) A neural network approach to determining optimal inspection sampling size for CMM. Comput Integr Manuf Syst 9(3):161–169MATHCrossRefGoogle Scholar
  42. 42.
    Cho MW et al (2005) A feature-based inspection planning system for coordinate measuring machines. Int J Adv Manuf Technol 26(9–10):1078–1087CrossRefGoogle Scholar
  43. 43.
    Jiang BC, Chiu SD (2002) Form tolerance-based measurement points determination with CMM. J Intell Manuf 13(2):101–108CrossRefGoogle Scholar
  44. 44.
    Hocken RJ, Raja J, Babu U (1993) Sampling issues in coordinate metrology. Manuf Rev 6(4):282–294Google Scholar
  45. 45.
    Fan K-C, Leu MC (1998) Intelligent planning of CAD-directed inspection for coordinate measuring machines. Comput Integr Manuf Syst 11(1–2):43–51CrossRefGoogle Scholar
  46. 46.
    Lee GL, Mou J (1996) Design the sampling strategy for dimensional measurement of geometric features using coordinate measuring machine. In: Proceedings of the Japan/USA symposium on flexible automation, pp 1193–1200Google Scholar
  47. 47.
    Lee G, Mou J, Shen Y (1997) Sampling strategy design for dimensional measurement of geometric features using coordinate measuring machine. Int J Mach Tools Manuf 37(7):917–934CrossRefGoogle Scholar
  48. 48.
    Pahk HJ et al (1995) Integrated precision inspection system for manufacturing of moulds having CAD defined features. Int J Adv Manuf Technol 10(3):198–207MathSciNetCrossRefGoogle Scholar
  49. 49.
    Orady E et al (2000) A fuzzy decision-making system for CMM measurements in quality control. In: The 2000 pacific conference on manufacturingGoogle Scholar
  50. 50.
    Kim WS, Raman S (2000) On the selection of flatness measurement points in coordinate measuring machine inspection. Int J Mach Tools Manuf 40(3):427–443CrossRefGoogle Scholar
  51. 51.
    Fang KT, Wang SG, Wei G (2001) A stratified sampling model in spherical feature inspection using coordinate measuring machines. Stat Probab Lett 51(1):25–34MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    Kim D, Ozsoy T (1999) New sampling strategies for form evaluation of free form surfaces. In: Proceedings of the 1999 ASME design engineering technical conferenceGoogle Scholar
  53. 53.
    Edgeworth R, Wilhelm RG (1999) Adaptive sampling for coordinate metrology. Precis Eng 23(3):144–154CrossRefGoogle Scholar
  54. 54.
    Albuquerque VA, Liou FW, Mitchell OR (2000) Inspection point placement and path planning algorithms for automatic CMM inspection. Int J Comput Integr Manuf 13(2):107–120CrossRefGoogle Scholar
  55. 55.
    Ainsworth I, Ristic M, Brujic D (2000) CAD-based measurement path planning for free-form shapes using contact probes. Int J Adv Manuf Technol 16(1):23–31CrossRefGoogle Scholar
  56. 56.
    Lin YJ, Murugappan P (2000) New algorithm for CAD-directed CMM dimensional inspection. Int J Adv Manuf Technol 16(2):107–112CrossRefGoogle Scholar
  57. 57.
    Cho MW, Seo TI (2002) Machining error compensation using radial basis function network based on CAD/CAM/CAI integration concept. Int J Prod Res 40(9):2159–2174MATHCrossRefGoogle Scholar
  58. 58.
    Wong FSY, Chuah KB, Venuvinod PK (2006) Automated inspection process planning: algorithmic inspection feature recognition, and inspection case representation for CBR. Robot Comput Integr Manuf 22(1):56–68CrossRefGoogle Scholar
  59. 59.
    Yuen CF, Wong SY, Venuvinod PK (2003) Development of a generic computer-aided process planning support system. J Mater Process Technol 139(1–3 SPEC):394–401CrossRefGoogle Scholar
  60. 60.
    Chung SC (1999) CAD/CAM integration of on-the-machine measuring and inspection system for free-formed surfaces. Proc Am Soc Precis Eng 20:267–270Google Scholar
  61. 61.
    Kramer TR (1989) Automatic generation of NC-code for hole cutting with in-process metrology. In: Proceedings of the 1989 IEEE instrumentation and measurement technology conference, Washington, pp 45–52Google Scholar
  62. 62.
    Kramer TR et al (2001) A feature-based inspection and machining system. Comput Aided Des 33(9):653–669CrossRefGoogle Scholar
  63. 63.
    Brecher C, Vitr M, Wolf J (2006) Closed-loop CAPP/CAM/CNC process chain based on STEP and STEP-NC inspection tasks. Int J Comput Integr Manuf 19(6):570–580CrossRefGoogle Scholar
  64. 64.
    Suh SH et al (2002) Geometric error measurement of spiral bevel gears using a virtual gear model for STEP-NC. Int J Mach Tools Manuf 42(3):335–342CrossRefGoogle Scholar
  65. 65.
    ISO(2004) ISO 14649-10: Industrial automation systems and integration—physical device control—data model for computerized numerical controllers—part 10: general process dataGoogle Scholar
  66. 66.
    Ali L, Newman ST, Petzing J (2005) Development of a STEP-compliant inspection framework for discrete components. Proc IME B J Eng Manuf 219(7):557–563CrossRefGoogle Scholar
  67. 67.
    ISO (2007) ISO 10303-219: Industrial automation systems and integration—product data representation and exchange—part 219: application protocol: dimensional inspection information exchangeGoogle Scholar
  68. 68.
    ISO (2004) ISO/DIS 14649-16: Data model for computerized numerical controllers—part 16: data for touch probing based inspectionGoogle Scholar
  69. 69.
    ISO (2004) ISO 10303-238: Industrial automation systems and integration—product data representation and exchange—part 238: application Protocols: application interpreted model for computerized numerical controllersGoogle Scholar
  70. 70.
    ISO (2002) ISO 14649-1: Data model for computerized numerical controllers: part 1 overview and fundamental principlesGoogle Scholar
  71. 71.
    ISO (2004) ISO 14649-11: Industrial automation systems and integration—physical device control—data model for computerized numerical controllers—part 11: process data for millingGoogle Scholar
  72. 72.
    ISO (2005) ISO 14649-12: Industrial automation systems and integration—physical device control—data model for computerized numerical controllers—part 12: process data for turningGoogle Scholar
  73. 73.
    ISO (2004) ISO 14649-111: Data model for computerized numerical controllers—part 111: tools for milling machinesGoogle Scholar
  74. 74.
    ISO(2003) ISO 14649-121: Data model for computerized numerical controllers—part 121: tools for turning machinesGoogle Scholar
  75. 75.
    Hardwick M (2004) On STEP-NC and the complexities of product data integration. J Comput Inf Sci Eng 4(1):60–67CrossRefGoogle Scholar
  76. 76.
    Honeywell (2007) FBMeas™ (cited 28 December 2010). http://www51.honeywell.com/aero/kcp/common/documents/FBMeas.pdf
  77. 77.
    Zhao YF (2009) An integrated process planning system for machining and inspection. Department of mechanical engineering, Ph.D. thesis, University of AucklandGoogle Scholar
  78. 78.
    Zhao YF, Xu X (2010) Enabling cognitive manufacturing through automated on-machine measurement planning and feedback. Adv Eng Inform 24(3):269–284CrossRefGoogle Scholar
  79. 79.
    DMSC (2010) IMTS 2010 demonstration (cited 30 December 2010). http://www.dmisstandards.org/
  80. 80.
    Hexagon (2010) Hexagon metrology (cited 2010 December 30). http://www.hexagonmetrology.com/
  81. 81.
    Mitutoyo (2010) Mitutoyo America Corporation (cited 30 December 2010). http://www.mitutoyo.com/
  82. 82.
    Metrology integrators (2010) (cited 30 December 2010). http://www.hhisoftwaresolutions.com/

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Yaoyao (Fiona) Zhao
    • 1
  • Robert Brown
    • 2
  • Thomas R. Kramer
    • 1
  • Xun Xu
    • 3
  1. 1.National Institute of Standards and TechnologyGaithersburgUSA
  2. 2.Mitutoyo America CorporationAuroraUSA
  3. 3.Department of Mechanical EngineeringUniversity of AucklandAucklandNew Zealand

Personalised recommendations