Generating Preset Distinguishing Sequences Using SAT

  • Canan Güniçen
  • Uraz Cengiz Türker
  • Hasan Ural
  • Hüsnü Yenigün
Conference paper


The preset distinguishing sequence generation problem is converted into a SAT problem to investigate the performance of SAT solvers for generating preset distinguishing sequences. An initial set of experiments are carried out and it is shown that the heuristics of SAT solvers can perform better than brute force algorithms that are used to generate preset distinguishing sequences.


Finite state machines Distinguishing sequences Satisfiability problem 



This work was supported in part by the Natural Sciences and Engineering Research Council of Canada, and the Ontario Centres of Excellence, and by Sabanci University.


  1. 1.
    Friedman, A.D., Menon, P.R.: Fault Detection in Digital Circuits. Prentice Hall, Englewood Cliffs (1971)Google Scholar
  2. 2.
    Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: principles, techniques, and tools. In: Reading. Addison-Wesley, MJ (1986)Google Scholar
  3. 3.
    Chow, T.S.: Testing software design modeled by finite state machines. IEEE Trans. Softw. Eng. SE-4(3), 178–187 (1978)CrossRefGoogle Scholar
  4. 4.
    Holzmann, G.J.: Design and Validation of Protocols. Prentice Hall, Englewood Cliffs (1990)Google Scholar
  5. 5.
    Binder, R.V.: Testing Object-Oriented Systems: Models Patterns and Tools. Addison-Wesley, Boston (1999)Google Scholar
  6. 6.
    Haydar, M., Petrenko, A., Sahraoui, H.: Formal verification of web applications modeled by communicating automata. In: Formal Techniques for Networked and Distributed Systems (FORTE 2004). Springer Lecture Notes in Computer Science, vol. 3235, pp. 115–132. Springer Berlin/Heidelberg, September 2004Google Scholar
  7. 7.
    Hennie, F.C.: Fault-detecting experiments for sequential circuits. In: Proceedings of Fifth Annual Symposium on Switching Circuit Theory and Logical Design, pp. 95–110, Princeton, New Jersey, November 1964Google Scholar
  8. 8.
    Hierons, R.M., Ural, H.: Reduced Length Checking Sequences. IEEE Trans. Comput. 51(9), 1111–1117 (2002)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Hierons, R.M., Ural, H.: Optimizing the length of checking sequences. IEEE Trans. Comput. 55(5), 618–629 (2006)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Gonenc, G.: A method for the design of fault detection experiments. IEEE Trans. Comput. 19, 551–558 (1970)CrossRefGoogle Scholar
  11. 11.
    Moore, E.P.: Gedanken experiments on sequential machines. In: Shannon, C., McCarthy, J. (eds.) Automata Studies. Princeton University Press, Princeton (1956)Google Scholar
  12. 12.
    Lee, D., Yannakakis, M.: Testing finite-state machines: state identification and verification. IEEE Trans. Comput. 43(3), 306–320 (1994). doi: 10.1109/12.272431 CrossRefMathSciNetGoogle Scholar
  13. 13.
    Gill, A.: Introduction to the Theory of Finite State Machines. McGraw Hill, NY (1962)MATHGoogle Scholar
  14. 14.
    Kohavi, Z.: Switching and Finite Automata Theory. McGraw Hill, NY (1978)MATHGoogle Scholar
  15. 15.
    Cook, S.A.: The complexity of theorem proving procedures. In: Proceedings of 3rd Annual ACM Symposium on Theory of Computing, pp. 151–158. ACM, NY (1971)Google Scholar

Copyright information

© Springer-Verlag London Limited  2011

Authors and Affiliations

  • Canan Güniçen
    • 1
  • Uraz Cengiz Türker
    • 1
  • Hasan Ural
    • 2
  • Hüsnü Yenigün
    • 1
  1. 1.Computer Science and Engineering, FENSSabanc? University Orhanl? TuzlaIstanbulTurkey
  2. 2.SITEUniversity of OttawaOttawaCanada

Personalised recommendations